
On-Line Synchronous Total Purely Functional Data-Flow
Programming on the Java Virtual Machine with Sig

Baltasar Trancón y Widemann
Ilmenau University of Technology

Ehrenbergstraße 29, 98693 Ilmenau
Germany

baltasar.trancon@tu-ilmenau.de

Markus Lepper
semantics GmbH

Berlin
Germany

ABSTRACT
Sig is the prototype of a purely declarative programming
language and system for the processing of discrete, clocked
synchronous, potentially real-time data streams. It aspires
to combine good static safety, scalability and platform in-
dependence, with semantics that are precise, concise and
suitable for domain experts. Its semantical and operational
core has been formalized. Here we discuss the general strat-
egy for making Sig programs executable, and describe the
current state of a prototype compiler. The compiler is imple-
mented in Java and targets the JVM. By careful cooperation
with the JVM just-in-time compiler, it provides immedi-
ate executability in a simple and quickly extensible runtime
environment, with code performance suitable for moderate
real-time applications such as interactive audio synthesis.

CCS Concepts
•Software and its engineering → Runtime environ-
ments; Domain specific languages; Interpreters; Just-
in-time compilers;

Keywords
Functional language; Synchronous data flow

1. INTRODUCTION
Sig is a prototypic purely declarative programming lan-

guage and system for the processing of discrete, clocked
synchronous, potentially real-time data streams. It is par-
allel in the sense that ordered and conditional execution of
operations are abstracted from in the semantics, which can
be understood in terms of elementary mathematics (relations,
automata) and a hardware circuit metaphor.

Sig is designed to support both visual (data-flow diagram)
and textual (functional) programming styles, to be scalable
to complex tasks, and to be interoperable with a wide variety
of execution platforms and legacy code bases. The potential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ ’15, September 08–11, 2015, Melbourne, FL, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3712-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2807426.2807430

application fields for Sig are in science, such as modeling and
simulation of symbolic system dynamics, in engineering, such
as sensor data processing and control in embedded systems,
and last but not least in art, such as audio synthesis and
computational music.

The strategic vision of the Sig project is to leverage the
safety and productivity of modern language technology in a
system that can be used effectively, and its actual semantics
understood, by domain experts in our fields of application.
We believe that this could constitute a significant improve-
ment over the state of the art, which is plagued by twin
evils: Application development using the established domain-
specific tools must deal with their outdated language tech-
nology and ill-defined semantics; while development avoiding
them bothers domain experts as programming laymen with
low-level general-purpose programming languages, and their
inadequate safety and expressivity.

A first major step towards our ambitious long-term goals
has been reported on in [26], where the computational frame-
work of Sig (i.e. denotational semantics, core operations,
intermediate code representation, and their precise relation-
ships) is discussed in due formal detail.

In the present paper, we report on the next step: a proto-
type Sig execution environment that emphasizes integrated
tool chains, and immediate and transparent execution of
code in various regimes of the interpreted–compiled spec-
trum. This allows us to demonstrate Sig in application
areas with interactive systems and moderate real-time re-
quirements, simultaneously showcasing the expressivity and
practical feasibility of the language. A running demo package
for basic audio synthesis has recently been presented [27].

Our implementation is also a case in point of the wide-
spectrum applicability of the JVM platform. The Sig lan-
guage incarnates a programming paradigm extremely dif-
ferent from the one underlying the Java language: Objects
with imperative behavior and sequential and/or concurrent
control flow on the one hand; infinite data streams and purely
declarative, periodically recurring, data flow-driven compu-
tations on the other. And yet, we have found the JVM
quite hospitable in terms of runtime environment interface
design and implementation, and efficient execution of data
flow-oriented programs.

1.1 Outline and Contributions
The following section summarizes the design of Sig, its

frontend and core representation from [26], as far as needed
for the present discussion. The remainder are novel contribu-
tions of this paper: Section 3 completes the picture with an

http://dx.doi.org/10.1145/2807426.2807430

operational model of Sig backends. Sections 4 and 5 present
the Sig compiler architecture, and its code generation strat-
egy and basic runtime API, respectively. Section 6 gives
some experimental results from JVM-based code generation
and execution. Section 7 ties up the loose ends.

Evidently, the current Sig system as presented in this
paper falls short of our long-term vision in many ways, which
are clearly pointed out at the corresponding points in the
discussion. Some of these are standard compiler construction
chores, while others are old or new challenging problems
of theory or design. Nevertheless, we comprehensively doc-
ument here a substantial amount of practical design and
implementation problems solved. The present state of the
tools allows us to experiment conveniently with reasonably
efficient executable Sig programs, to build demonstrations
and gather feedback for the evaluation of language design
issues, and to reflect on the JVM as an intermediate language
technology.

2. SIG AT WORK

2.1 Design Considerations
With regard to notation, the domain-specific data-stream

programming world is presently divided into a visual and a
textual camp.

The visual approach, employing data-flow diagrams as
the main notation for algorithms, is traditionally favoured
by domain experts. Typical programming systems include
Simulink1 for engineering applications, Max/MSP2 for audio
and artistic performance, or the “system dynamics” school of
computational modeling of complex systems3. Programs are
graphs built from boxes that specify computations, and wires
that carry data flow. In spite of the appealing ability to vi-
sualize the routing of data flow very intuitively, the diagram
approach is known to suffer from poor scalability [8], frequent
confusion of layout and semantics, and lack of support for
other essential aspects of algorithms: data types, case dis-
tinctions, abstraction and reuse, state and initialization [23].

These weaknesses are conspicuously absent in functional
programming, which features well-understood remedies such
as type inference, algebraic data types and pattern match-
ing, anonymous and higher-order functions [13], and purely
declarative semantics [2]. It is therefore no surprise that
functional reactive programming (FRP) [31] has been hailed
as an elegant foundation for data-stream programming by
the more semantically-minded. Diagrams can be expressed
in this framework in terms of arrows [12]. However, the ax-
iomatic presentation makes it difficult to relate the theory
to the practice of domain experts on one hand, and to the
technological legacy of established execution models and code
bases on the other.

The Sig approach aims at neutrality between visual and
textual frontend representations, and consequently has been
designed around a functional core representation that can
represent both naturally [26].

2.2 Frontend
True to the tradition of declarative data-flow programming,

Sig programs are represented in a style that abolishes all

1http://www.mathworks.com/products/simulink/
2https://cycling74.com/products/max/
3http://www.systemdynamics.org/

δ

Mux

H?

S?x

t
y

Figure 2: Triggered S&H; diagram with multiplexer

kinds of explicit sequential control flow, such as blocks, loops
or recursion. All computations are specified as if operating on
instantaneous data at a single clock tick, and are understood
to be implicitly lifted to whole infinite streams by iteration
at their respective clock rate, without spontaneous “interrupt”
events or termination. All data flow is conceptually instan-
taneous, unless explicitly delayed. Nontrivial behavior in
general (anything other than a memoryless function mapped
over a stream) arises from delayed interference, and state
in particular arises from delayed feedback. Instantaneous
feedback (i.e. circular data flow not passing through a delay
operator) is forbidden. Hence no causal singularities arise;
scheduling can be decided modularly and statically4, and no
fixpoints need be considered. For simplicity, we consider only
one primitive delay operator δ, which delays an arbitrary
stream for exactly one clock tick (i.e. prepends some specified
or default initial element).

A great variety of important building blocks for stream
processing algorithms can already be specified in the simplest
form of this style; see Figure 1 for a gallery of ubiquitous
components built from elementary arithmetics and delay.
The operator (∗∗

∑
) is a linear combinator with given weights.

Evidently, the diagram approach shines where data has
product structure and routing is static: a tuple of values is
nicely visualized as a bus of wires. By contrast, data with
coproduct structure, where routing depends on dynamic case
distinctions, is handled rather awkwardly. It is hence no sur-
prise that automata (a principal algorithmic manifestation
of coproduct-oriented computation) are supported by a dif-
ferent diagram language in visual approaches (e.g. Stateflow
for Simulink), if at all.

As an archetypal running example, consider the sample-
and-hold (S&H) operator, which either forwards its current
input x or retains its previous output y, depending on an
external trigger t taking the values {S,H}. This functionality
can be specified conveniently in a diagram as depicted in
Figure 2, using an ad-hoc multiplexer component. Note
that we refrain from the “primordial engineering practice” of
encoding the range of t numerically, for obvious reasons of
clarity and safety. An equivalent specification can be given
textually as depicted in Figure 3, using an enumerated type
and the Sig box notation. Note that this notation differs
from lambda expressions by naming both inputs and outputs
explicitly and symmetrically.

The multiplexer approach to control flow, while handy
for simple situations, has rather poor expressivity and scal-

4For a counterexample arising from instantaneous feedback
see [5].

http://www.mathworks.com/products/simulink/
https://cycling74.com/products/max/
http://www.systemdynamics.org/

δ

∑(−1)

1x
y

δ

∑1

∆tx
y

δ

∑(1−α)

αx
y

Figure 1: Linear stream programming with delay: left to right – backward difference; discretized integral;
first-order low-pass filter.

type trigger = { S, H }

sah = [
in x : real , t : trigger
out y : real

where
y := case t of {

S → x
H → delay(y)
}

]

Figure 3: Triggered S&H; Sig notation (box)

type option(T) = { some(T), none }

sah2a = [
in x : option(real)
out y : real

where
y := case x of {

some(v) → v
none → delay(y)
}

]

Figure 4: Triggerless S&H; Sig notation (box)

ability. For instance, consider the evident refactoring of
the S&H component from a functional programmer’s view-
point: Since the input x is irrelevant in the hold case, a
more economic interface would fuse the two inputs, using
a well-known algebraic datatype as depicted in Figure 4.
Note that Scala vernacular is used, Haskell enthusiasts may
substitute Maybe. Whereas this encoding is easily processed
with pattern matching clauses, there is no obvious viable
generalization of multiplexing to do the job. Apparently the
challenging feature is the combination of case distinction and
data unpacking, as effected by pattern (de)constructors, as
a single atomic operation.

To bring the S&H example even closer to traditional func-
tional programming style, a lambda-style asymmetric func-
tion abstraction and named access pattern may be used, as
depicted in Figure 5. Note that delayed feedback from the
output, a ubiquitous pattern in stream programming, prac-
tically forces the function body expression to be a locally

// getOrElse : (Option(T), T) → T

sah2b = {
(x : option(real)) → y
where y := getOrElse(x, delay(y))
}

Figure 5: Triggerless S&H; Sig notation (lambda)

bound variable, hence the gain in conciseness over the box
notation is not quite as great as in non-circular cases.

However, the where clause gives an impression of the
unification of the diagram and expression paradigms that
Sig aspires to. Ideally, the programmer should be free to
combine the notations orthogonally, each where it shines:
Expressions for tree-shaped flow with irrelevant intermediates
and coproduct-structured data; diagrams for irregular and
circular flow and product-structured data.

The Sig language addresses these issues by program reduc-
tion to a core layer with primitive operations that can imple-
ment multiplexers and pattern matching equally naturally,
and deal with delay in a semantically clean and operationally
useful way.

2.3 Core
The key insight behind the semantic framework of Sig

is that three essential description formats can be made to
coincide [26]:

1. algebraic hypergraph representation of data-flow dia-
grams (with wires as nodes and boxes as hyperedges,
respectively);

2. static single-assignment (SSA) form of functional pro-
gram expressions;

3. intensional definition of local, elementwise semantics
given as a Mealy semiautomaton, i.e., combined I/O-
and-transition relation (giving rise to global, stream
function semantics by coinduction, along the lines
of [6]).

The full details of the algorithmic derivation of (2.) and
the theoretical foundation of (3.) from a functional frontend
notation can be found in [26]. In the remainder of the present
section, we summarize the key points. The following sections
then give the main technical contributions of the present
paper, by discussing the further use of (2.) in a compiler
pipeline.

Ra

s

b

s′

Figure 6: Stateful single-step computation model

a

s

b

s′

Figure 7: Delay operator functionality

2.3.1 Delay Elimination
The notation of stream computations in terms of per-

element and delay operators, while intuitively convenient, is
awkward to reason with directly in a declarative language
framework. Stream-level behavior is not specified fully by
element-level input/output relations, as delay operators ap-
pear to break referential transparency.
Sig eliminates delay operators en route to the core layer,

by introducing a matching pair z, z′ of pre- and post-state
variables for each occurrence of δ, which then becomes a
pair of independent simple assignments, forwarding input to
post-state and pre-state to output, respectively. Thus the
apparent data-flow connection between input and output
of the delay node, which does not imply actual flow at the
single element level, is broken. Apparently circular data flow
is admissible if and only if the circles are eliminated by the
splitting of all delay operators.

It is implied that the post-state values of each clock cycle
flow to the corresponding pre-state variables of the next
cycle. That is, the quaternary relation of input, output, pre-
and post-state specifies a stream-transducing Mealy machine;
possibly a nondeterministic one, see section 2.3.2 below.

The approach can be visualized as depicted in Figures 6
and 7. Explicit data flow, in the sense of the functional
composition of operations, proceeds left to right. Tempo-
ral data flow, between clock ticks, proceeds top to bottom.
The stream-level global semantics of a program is given by
replicating its element-level relation infinitely often along the
vertical axis, with the post-state of each step equal to the
pre-state of its successor, and specifying initial state values.

The reduction of delay to state can also be notated textu-
ally. Figure 8 depicts the result of delay elimination from the
program in Figure 3. Note that reduction to the core layer
also entails the explicit naming of all intermediate values, as
customary for administrative normal or SSA form, although
the S&H example does not exhibit this feature.

2.3.2 Control Elimination
Control flow is an awkward feature from a data flow-centric

perspective. The Sig approach reduces control flow to data
flow for the purpose of non-sequential core-layer semantics.
Backends are free to implement these directly, as in hard-

sah = [
in x : real , t : { S, H }
out y : real
state z : real // implies z’ : real

where
y := case t of {

S → x
H → z // formerly output of δ
}

z’ := y // formerly input of δ
]

Figure 8: S&H; Sig notation (delay eliminated)

ware, or to emulate them by reconstructed control flow, as
on sequential machines; see section 5.2 below. The ratio-
nale here is that the automatic sequentialization of paral-
lel programs5 is conceptually much simpler, and effectively
achieved with standard compiler technology, than the reverse
problem, which remains the elusive holy grail of traditional
high-performance computing [1].

The semantic equivalence of control-flow structure (branches
either taken or not) and data-flow structure (selection from
branch results) is of course only possible by the absence of
both side effects and nontermination in the language.

The elimination of control is achieved by creatively abusing
the ϕ operator introduced by SSA, and complementing it with
a novel, dual γ operator, to be specified below. In its original
sense, ϕ multiplexes a number of inputs, understood as
alternative values of the same variable produced by different
control predecessors.

Of course, there is to be no such thing in Sig; the very
purpose of the core layer is to gather all computations in a
single basic block. Instead, the Sig-style ϕ operator multi-
plexes values from (the right hand sides of) different clauses
of a case distinction, depending on the success of pattern
matching (of their respective left hand sides). To this end,
all internal variables are tacitly augmented to admit an
additional value ⊥. Note that ⊥ merely signifies that no
value is currently available. This is a decidable situation,
since program nontermination, the usual meaning of ⊥ in
the semantics of recursive functions, is excluded. Ordinary
elementary operations are strict ; if any input is ⊥, then so
are all outputs.

Each partial computation, such as a single clause of a
case distinction, can be represented uniformly as a left-total
relation in the sense of Figure 6, where missing cases are
mapped to ⊥ outputs (and post-states). A ϕ node then
simply chooses nondeterministically among its non-⊥ inputs,
or yields ⊥ if there is none.

x1, . . . , xn
ϕ7−→ xi ⇐⇒ xi 6= ⊥ ∨ {x1, . . . , xn} = {⊥}

The success of pattern matching is communicated by
adding to each data destructor (implementation of pattern
constructor) an additional “control” output indicating suc-
cess. Its type is nominally a singleton {>}, augmented to a
Boolean control type {>,⊥}. If the pattern succeeds, then
regular outputs unpack the data constructor fields, which

5Note the distinction of parallel programs from parallel exe-
cutions.

S−1

H−1

ϕ

γ

γ

x

t y

z

z′

Figure 9: Triggered S&H; diagram (core)

are certainly non-⊥ by strictness, and the control output is
>. If the pattern fails, then all outputs, including control,
are ⊥. Note that this encoding seems redundant for data
constructors with arguments, but it is not for the common
case of nullary constructors, where the corresponding pattern
is a Boolean test.

The selection of partial computations is expressed by a
guard operator γ. It takes a single data input and arbitrarily
many control inputs. The data is forwarded if and only if no
control is ⊥:

x, c1, . . . , cn
γ7−→

{
x {c1, . . . , cn} = {>}
⊥ otherwise

A clause from a case distinction is then selected by guarding
each result of its right hand side with all control values issued
by its left hand side.

The elimination of control can be specified formally by
tedious but straightforward syntax-directed rewrite rules,
see [26]. The application to the S&H example is depicted in
Figure 9. Data and control wires are indicated by solid and
dashed lines, respectively.

A textual representation is depicted in Figure 10. As stated
in the beginning of section 2.3, the set of assignments can
be read consistently in several ways: as the adjacency list of
the hypergraph corresponding the diagram in Figure 9; as
a normalized functional program in SSA form consisting of
a monolithic basic block; as the intensional definition of an
element-level semantic relation by set comprehension (in the
style of the Z notation [24]). With respect to the former two,
note that the textual single-assignment constraint coincides
with the usual diagram constraint that distinct box outputs
must not collide on a shared wire.

Note that γ/ϕ nodes act as data-carrying con-/disjunction
operators, respectively. They can be reduced further to
logical formulae in conjunctive normal form. Hence several
static properties, such as definite single (non-⊥) assignment
of outputs, can be checked using off-the-shelf SAT solver
technology, as noted in [26].

3. BACKEND
While Sig is designed with maximal platform independence

in mind, there are a number of general assumptions that
constitute a loose execution model. Its implementation on
the JVM is straightforward; see the next section.

sah = [
in x : real , t : { S, H }
out y : real
state z : real // implies z’ : real

where
local c, d : control
local v, w : real
c := S−1(t)
v := guard(x, c)
d := H−1(t)
w := guard(z, d)
y := choose(v, w)
z’ := y

]

Figure 10: S&H; Sig notation (core SSA)

3.1 Composition of Components
A key feature of Sig for scalability and efficient use is

full compositionality. The computational box abstraction
unifies primitive computations and user-defined subprograms.
Thus complex stream-processing systems are constructed and
scoped hierarchically. A reference to a defined component
can be inlined (i.e. the box replaced by its innards) without
affecting program semantics.

This seems like an obvious, almost trivial, property of
a functional language, but has decidedly nontrivial conse-
quences in a time-aware setting. Most importantly, the wire
abstraction of data flow must not have intrinsic delay, as
this would break the scale-free semantics and disallow the
optimizations that routinely go with inlining, such as copy
propagation. All data flow, except for explicit delay, must be
undistinguishable from instantaneous transport.6 This places
hard global bounds on the depth of computational networks
that can be implemented with given real-time constraints.

A minor downside is a blanket ban on instantaneous feed-
back from outputs of a complex subcomponent to its own
inputs. Such feedback could possibly be perfectly safe if
the corresponding internal data path that completes the
loop is delayed, but that fact is not readily reflected in the
interface specification (type) of the component, and must
hence be disregarded at least in modular compilation, for
reasons of proper encapsulation. As a consequence, inlining
could conceivably turn an illegal program into a legal one.
Conversely and more unfortunately, a subexpression with
external feedback cannot be factored out straightforwardly.

3.2 Global Control
The realization of a component performs a single step

that processes one element of each connected data stream.
This involves the loading of pre-state from the preceding
post- (or initial) state, the consumption of inputs, and the
production of intermediate values, post-state and outputs,
with no particular order of the subtasks specified. During the
execution of a step, each component is responsible for having
its subcomponents executing a step of their own, respecting
data flow causality constraints.

On a sequential platform, this means that the producer of
each stream must execute before its respective consumers.

6To use a physical metaphor, the Sig model of spacetime is
the Newtonian c→∞ limit of relativity.

Sig is designed such that a schedule can be devised composi-
tionally and ahead of time. Note that the order of assignment
statements depicted in Figure 10, while semantically irrele-
vant, is a causally valid sequential schedule of the component;
each variable is written before it is read. A sequential im-
plementation is free to choose this or any other valid order,
as long as the choice remains transparent to the external
observer.

In many cases, ‘ahead of time’ in the last paragraph means
at compile time, but various advanced (yet typical) applica-
tions require the reconfiguration of computation subnetworks
by parts of the program running at a slower rate.

Parts of a Sig program may operate at the same or at
different clock rates [28]. The complete program is to be
sliced into its synchronous parts (i.e. each operating at a
single rate) and re-sampling connectors. The runtime envi-
ronment triggers the execution steps of each root component
centrally, with the prescribed rate, in a conceptually infinite
loop. Components may not choose to terminate this loop
spontaneously. The current state of the compiler creates pas-
sive component code only. Hence the main loops that drive
components at their respective (interleaved) clock rates have
to be programmed manually; see for instance Figure 15 below.
The part of the tool chain that automatizes inference of clock
rates, slicing of multi-rate programs and generation of driver
loops is a matter of future research and development.

3.3 Inter-Component Communication
Communication between components (i.e. how wires work)

in Sig is characterized by pull-based shared memory. Actual
implementations may use arbitrary mechanisms to achieve
the specified conceptual behavior:

Each component has exclusive ownership of a writable
location for a single element of each of the output streams
it produces. Consumers can access the current element of a
stream by reading from this location. All activity is driven
by external clocks; neither production nor consumption con-
stitutes an observable event.

On the one hand, the current element of each stream is
defined by the value at the corresponding location at the clock
tick. The producer must be given the opportunity to write an
up-to-date value in time. Otherwise, the previous value may
be tacitly retained; failure to meet real-time requirements
need not be detected at runtime. By writing to a location,
the previous value is generally made inaccessible. If needed,
a delayed copy must be retained.

All outputs of a component change apparently simultane-
ously. Inconsistent states, such as temporarily arising from
implementation by a sequence of write operations, must not
be observed. Spontaneous events of the execution environ-
ment must be quantized at some clock rate, and reacted on
by polling.

On the other hand, each component is oblivious to the
consumers of its outputs. Reading the current element of a
stream from a location does not notify the producer. Demand
for a value does not trigger its computation, nor does lack of
demand prevent it.7

3.4 Total Computations
The shared-memory communication model implies that,

without additional out-of-band information, it is conceptually

7Weird effects such as the infamous time leaks of lazy FRP
do not arise.

impossible not to yield a result. In embedded systems, this
is often very practically the case.8 Sig components are
generally implementations of total functions; they must not
fail to define their outputs for any valid combination of input
and pre-state.

By contrast, arbitrary networks of components have more
freedom. They can produce ⊥ values, and be nondeterminis-
tic. In the disciplined textual frontend language of Sig, the
former arises from partial computations such as incomplete
case distinctions, and the latter arises from overlapping cases,
since Sig has no implicit first- or best-fit disambiguation rules.
By liberal use of the core operations γ and ϕ, a wider variety
of similar situations can be created.

Only when a network of components is explicitly desig-
nated as the definition of a component by the programmer,
a proof obligation for totality and determinism is incurred.
Since the question is evidently undecidable in general for
all nontrivial collections of primitive operations, a statically
checkable approximation is needed. For the disciplined ap-
proach (where unsafe subcomputations arise from pattern
matching), the requirement that case distinctions be com-
plete and non-overlapping is a natural candidate, and can be
checked effectively using standard analysis technology. This
is implemented in the current state of the compiler. Possible
relaxations, as well as the general case of arbitrarily mixed
core operations, are left for future research.

4. COMPILER ARCHITECTURE
The current Sig compiler and execution environment are

written in Java. The parser is generated by the ANTLR9 tool.
Syntax trees are mapped to an intermediate representation
(IR) as specified in [26], and the various subsequent program
transformations towards the SSA form are implemented using
a visitor pattern approach. The IR data model and the visitor
machinery [16] are generated from a very concise (∼200 lines)
specification by the umod10 tool.

Programs in IR can be interpreted on the fly, or trans-
lated to JVM bytecode for better performance. A common
component API makes the choice of the execution strategy
transparent (including manual implementations in any JVM
language of choice), on a per-component basis. Bytecode is
produced in a closed loop and fed directly to the JVM class
loader, without a need for external storage or tools. Alterna-
tively, the bytecode can be stored for persistent deployment
or ahead-of-time compilation to machine code.

Theoretically, Sig programs can be modularized and com-
piled separately, although the frontend notation has no mod-
ule system yet. However, for real-time applications, we expect
that satisfactory results require whole-program compilation,
in particular since many important analyses (e.g. worst case
execution time) work best globally. The non-recursive nature
of Sig data flow networks ensures that abstraction barriers
which exist in well-encapsulated source code can be elimi-
nated during compilation by aggressive inlining. We expect
performance-critical applications to be small (and our com-
piler efficient) enough for making whole-program compilation
feasible.

8As has been demonstrated drastically by the botched first
launch of the Ariane 5 rocket [9].
9http://www.antlr.org

10http://www.bandm.eu/metatools/docs/usage/umod.html

http://www.antlr.org
http://www.bandm.eu/metatools/docs/usage/umod.html

interface Source {
int getInt (int index);
double getDouble (int index);
boolean getBoolean (int index);
Object getValue (int index);
}

Figure 11: Runtime Data API

4.1 Runtime Interface

4.1.1 Type Specialization
Several basic data types of the Sig frontend are mapped

directly to their Java/JVM counterparts, such that primitive
operations can be used and the dynamic allocation of boxing
objects can be avoided. Computations that involve only such
types are guaranteed to run without heap allocation, and
hence without triggering the garbage collector, which greatly
enhances real-time responsiveness.

In particular, the Java/JVM types int and double are
supported. The Java frontend type boolean is supported as
well, which is encoded as the subset {0, 1} of int on the JVM.
Following this example, arbitrary user-defined enumerated
types (i.e. algebraic data types with nullary constructors only)
are encoded as subsets {0, . . . , n−1} of int. The extra value
⊥ is encoded by pairing each variable of primitive type with
a boolean control variable. Types that have no primitive
mapping, such as complex algebraic data and function types,
are encoded as objects.

4.1.2 Data Interfaces
For the sake of abstraction, the interfaces of components

admit two different perspectives. The internal perspective is
symmetrical with respect to input and output. It identifies
variables of both kinds formally by locally scoped names, and
operationally by self-owned storage locations. This view has
been demonstrated in the examples of the Sig box notation.

By contrast, the external view treats input and output
asymmetrically. Each component publishes its outputs pas-
sively by implementing an API Source for querying their
current values. Conversely, inputs are supplied by reference
to another instance of the API Source, which the component
may query actively. Variables of either kind are identified by
their position in the list of respective parameter declarations,
regardless of their internal names. Thus the principle of
alpha equivalence carries over from conventional functional
programming.

The API needs to strike a pragmatic balance. On the one
hand, static type safety and efficiency of data flow demand
a high degree of specialization. On the other hand, ease of
use and efficiency of caller logic demand a uniform access
pattern. In the current implementation, we have chosen a
middle road. The uniform interface is depicted in Figure 11.
It specializes access according to implementation data types,
but not according to position. Behavior is undefined if the
selected position index is out of bound, or the stream not
of the expected type. A critical evaluation of the actual
performance and comparison with alternative approaches is
a matter for future research.

Note that the API is mainly employed at system (or mod-
ule) boundaries. Globally, instances are supplied by the

runtime environment and the compiled program for system
inputs and outputs, respectively. Locally, API encapsulation
arises at higer-order/meta-programming boundaries, where
one part of the running system configures another, to be
run at a faster rate. Within relatively static component
networks, the Sig compiler is expected to perform whole
program optimization, resulting in the elimination of inter-
mediate interfaces by inlining.

4.1.3 Component Instantiation
So far, we have presented first-order features of Sig. Obvi-

ously, the expressive power of a functional language is greatly
enhanced by higher-order capabilities. However, the time-
dependent variables of the data-flow paradigm come with
some pitfalls with regard to referential transparency, as has
been noted as a motivation for structured FRP [31]. For
illustration, consider the following higher-order program of
‘curried’ multiplication:

{ x : real → { y : real → x ∗ y } }

In a data-flow setting, this describes a component that trans-
forms a stream of numbers into a stream of multipliers. But
since the resulting components need not run at the same
clock rate they are produced, the free variable x in the inner
component body cannot denote the same thing (stream) as
in the outer body!

We resolve this paradox by tying nested functions to staged
metaprogramming à la MetaML [25], where code fragments
can be quoted and spliced, the meta equivalent of function
abstraction and application. Hence Sig forces the inner
component to be quoted:

{ x : real → #{ y : real → x ∗ y } }

The lexically scoped free variables of quotations, called cross-
stage persistent in MetaML parlance, are a hallmark of stag-
ing, as opposed to macro programming, where they would
be taken literally. In Sig, cross-stage variables are handled
differently from other variables: they denote time-invariant
constants, namely snapshots of stream elements taken at the
clock tick of quoting. Confer the lexical scoping of final
variables in nested Java classes.

Thus quoted components can be applied as stream func-
tions, completely desynchronized from the context of their cre-
ation. The typical nontrivial usage pattern is that slow parts
of a multi-rate system instantiate components for the faster
parts for dynamic configuration. The usual well-formedness
constraints on stages ensure that no weird causal loops arise.
How our approach relates to theories of point-free higher-
order stream programming such as the comonad distributive
laws of [30], is an interesting open question.

The technical realization of the staging scheme in the Java-
based runtime environment uses a three-tiered factory model,
with one layer of abstraction each above and below the actual
representation of components.

The highest level of abstraction, and the unit of imple-
mentation, is the Template. It corresponds to the defining
expression of a component object (i.e. a quotation in the
frontend language), out of context. In higher-order functional
terminology, templates can be thought of as lambda-lifted
local functions. A template can be instantiated with an envi-
ronment snapshot of the current values of its free (cross-stage
persistent) variables to produce a Component, see Figure 12.
This is done implicitly by the quotation operator. Different

implementation strategies can coexist transparently through
different subclasses of Template.

The middle level of abstraction, and the unit of configura-
tion, is the Component. Components represent referentially
transparent stream functions. In higher-order functional ter-
minology, components can be thought of as closure-converted
local functions. Confer the extra fields and constructor pa-
rameters of nested Java classes. In order to make components
reentrant in spite of local state, they must be instantiated
for each stream-level application to produce a Session, see
Figure 13. This is done implicitly at initialization time of
the containing computation.

The Component interface can be instatiated by the user
to link foreign (stream) functions into a Sig program, but
care must be taken lest side effects break the non-sequential
semantics.

The lowest level of abstraction, and the unit of elementwise
computation, is the Session. Sessions represent intermediate
states of stream computations, and are thus not referentially
transparent. They are never exposed to the user, but handled
only internally. A session must be initialized (init), and sub-
sequently invoked (step) once per clock tick to execute a step.
This is done implicitly at initialization time of the containing
computation, and by the splicing operator, respectively. See
Figure 14.

Sessions communicate by the Source API. Each session
must be connected to a source from which it can pull the cur-
rent elements of its inputs streams at each step. Conversely,
each session implements the Source interface to provide pub-
lic access to the current elements of its output streams. The
wiring is performed implicitly at initialization time of the
containing computation; the actual pulling of outputs is done
by the splicing operator.

In principle, sessions can be reused sequentially by recon-
nection to new inputs and reinitialization, although concur-
rent reuse is obviously unsafe and must be avoided. By con-
trast, independent Sig computations implemented as distinct
components are guaranteed to have no implicit race condi-
tions. Thus they may be executed in parallel on multi-core
processors (or eventually FPGAs), as long as synchronization
of observed outputs is maintained between the steps by a
suitable barrier.

Each step of a session consists of three subtasks that
update pre-state (tick), inputs (input), and post-state and
outputs (action), respectively. Subclasses of Session must
override all abstract methods to implement the behavior
of the represented component, as well as allocate exclusive
storage for local variables. The current implementation
mandates that a copy of the pulled values be stored during the
input phase. Thus, all variables in the scope of the component
body can have the same storage and access pattern, and
there is no need for distinct “addressing modes” of primitive
operations.

Figure 15 shows a typical hand-coded main loop driving
a component c with a single output stream and writing
successive elements to the console. The loop is subject to
external termination condition (halt) and synchronization
(wait). The number and types of inputs from in and the pos-
sible existence of additional unused outputs are not manifest
in the target program.

The API has been designed consciously such that no ad-
vanced features of Java are used, hence it could be mapped
with little effort and no significant overhead to more low-level

interface Template {
Component newInstance (Source environment);

}

Figure 12: Runtime factory; upper level

interface Component {
Session newSession ();

}

Figure 13: Runtime factory; middle level

languages such as C. Thus, by the implementation of a C
code generator, Sig components could be made usable as
libraries in a very wide variety of native systems, although
that would mean losing the benefits of the JVM platform;
see section 6 below.

5. CODE GENERATION STRATEGIES

5.1 State Transition
From the perspective of the Sig core layer, each delay

operator gives rise to a pair of distinct variables x and x′ for
pre- and post-state, respectively. The code for a single step of
a component relies on the calling environment to update its
pre-state (tick), namely with initial values on the first call,
and with the previous value of the corresponding post-state
on each subsequent call. How this state transition is actually
effected is up to the particular implementation. There are
several reasonable tactics with different usage profiles:

Transport. The pair of conceptual variables can be taken
literally, and an actual move operation can be used to copy
values from each post-state variable to its pre-state counter-
part. This is a semantically safe fallback tactic that works
in all cases, but not particularly efficient. It is used by the
current compiler implementation by default.

Double Buffering. The behavior of the step code can be
made to alternate between two variants, either by a global
Boolean indirection switch, or by flipping between two clones
of the code where the respective roles of pre- and post-state

abstract class Session implements Source {
private Source inSource ;
public void setInSource (Source inSource) {

this . inSource = inSource;
}

public abstract void init ();

public void step () {
tick ();
input(inSource); // inSource used only here
action () ;

}

protected abstract void tick ();
protected abstract void input (Source source);
protected abstract void action ();

}

Figure 14: Runtime factory; lower level

void mainLoop(Component c, Source in) {
Session s = c.newSession();
s . setInSource(in);
s . init ();
while (! halt ()) {
s . step ();
System.out. println (s .getDouble(0));
wait (); // possibly real time

}
}

Figure 15: Usage example

δ δ −→

Figure 16: Delay reducing to non-overlayable state
variables

are mirrored. This tactic is likely more efficient than literal
transport if there are many state variables. It is supported
by the current compiler implementation as a configurable
alternative to the default.

Overlay. During code generation for a sequential ma-
chine, the SSA variables of the core representation are likely
allocated to pseudo-registers anyway, such that, in general,
values with non-overlapping life times can share a storage
location. Additional constraints can be placed on the instruc-
tion schedule, such that all operations reading a pre-state
variable must occur before the operation writing the corre-
sponding post-state variable. Then pre- and post-state are
non-overlapping, and may share a storage location. This
tactic can save space as well as time, but does not work in
all cases; see Figure 16 for a counterexample. It is used by
the current compiler implementation heuristically; optimal
use is planned for a future revision.

Indirect Buffering. Multi-step delay of data must be
expressed as a chain of single-step delay operations. No
matter which of the preceding tactics is used, this yields
a näıve FIFO buffer implementation in terms of state vari-
ables, where values are actually transported from the input
to the output end, see Figure 17. Except for near-trivial
cases, an indirectly addressed (ring buffer) implementation
is preferrable, where the current position of the input and
output ends move, rather than the stored data. This tactic
needs to be applied selectively for suitably long delay chains
in order to pay off. Support is planned for a future revision
of the compiler.

5.2 Parallel and Sequential Evaluation
The semantics and core operations of Sig have been de-

signed carefully to allow for maximal potential parallelism,
constrained only by explicit data flow. The encoding of con-
trol flow into data flow that embodies this principle, and
is achieved by means of γ and ϕ operations as described
above, seems unnatural from the perspective of execution
on a conventional sequential machine: rather than choosing
proactively between alternative branches, all branches are
evaluated independently, and unneeded results are only dis-

δ δ δ δ

↓

Figure 17: Delay chain reducing to FIFO array

carded after the fact. Compare this behavior to the eager
operators & and |, as opposed to the short-circuiting opera-
tors && and ||, respectively. Several arguments need to be
considered in favor of either operational approach:

In a side-effect free language, the two variants are be-
haviorally indistinguishable.11 Implementations may choose
either, on the grounds of convenience and efficiency. On
a simple sequential execution platform, avoiding unneeded
computations by conditional branches is virtually always
a win. On modern CPUs with deep pipelines, branchless
solutions that overlap alternatives and select results by con-
ditional moves may be preferrable, as long as alternatives
are few in number and not disproportionately expensive.
Opportunistic choices need to be made, based on accurate
cost models for the specific processor architecture, for good
performance. By contrast, on non-sequential platforms such
as field-programmable gate arrays (FPGAs), a literally par-
allel layout of alternatives followed by multiplexers is the
canonical solution.

The current implementation of the Sig compiler takes the
parallel semantics of control at face value, and translates γ
and ϕ operators to code as they appear. Clearly, this solution
may scale badly on its target platform, the strongly sequential
JVM. Fortunately, the sequentialization of parallel programs
is turning out to be a much more tractable problem than
its converse. A compiler pass that identifies conditionally
needed code in the SSA form and substitutes conditional
branches for γ and ϕ nodes has recently been developed [18].
The strategy is roughly as follows:

1. Identify, for each node in the data-flow network, the
static condition under which it can possibly contribute
to the output. This is always a propositional formula
over control variables, where destructors, γ and ϕ nodes
on the path contribute positive literals, conjunctions
and disjunctions, respectively.

2. Form a decision tree, grouping together nodes with
identical conditions.

3. Simplify nested conditions, both relative to their ances-
tors, and by exploiting disjointness and completeness
of alternative constructors in algebraic data types.

4. Group nodes into basic block, guarded by conditional
branches that check their respective conditions. Make
blocks as large as possible to avoid redundant checks,

11Note that Sig is only naturally side-effect free because
communication is not event-based.

c := S−1(t)

v := x w := z

y := ϕ(v, w)
z’ := y

c ?> ⊥

Figure 18: S&H; sequentialized control flow graph

but split and thread where demanded by data depen-
dencies.

5. Since γ nodes end up in blocks that are conditional
on the nodes’ control inputs, they can be replaced by
ordinary moves.

6. Replace data-flow ϕ nodes by classical, control-flow ϕ
nodes.

The application to the S&H example from Figure 10 is de-
picted in Figure 18. Note the single decision on c and the
dependency-induced split of unconditional statements be-
tween the top and bottom block. Note also that the test for
d := H−1(t) is subsumed by the negation of c, given type
information.

We shall illustrate the practical effect of this transforma-
tion on code generation for simple examples in section 5.4
below. The subsequent passes (register allocation etc.) are
preliminary, and do not yet allow meaningful performance
experiments with realistically complex programs.

5.3 Interpretion of SSA Form
The interpreter variant of the current Sig execution en-

vironment operates almost directly on the SSA core form.
Operations are scheduled statically in some valid sequential
order, variables are allocated to numbered reusable “regis-
ters”, and frequently occuring generic operations are spe-
cialized for their operand count (if variadic) and/or type (if
polymorphic), respectively. Otherwise, there is a one-to-one
relationship between SSA statements and substeps of the
actual execution.

The substeps are reified as individual Action objects, see
Figure 19, organized in an object-oriented form of the tradi-
tional threaded code approach. The allocated virtual registers
are realized as a family of equally-shaped arrays of the various
supported primitive types, bundled together with a program
counter (i.e. reference to the next substep) in a State ob-
ject; see Figure 20. The interpreter invokes each substep in
turn (run), allowing it to modify the current state. How the
program counter is updated has been omitted for simplicity.

The threaded code implementation has been designed to
maximize the use of primitive data and array features of
the JVM, as opposed to “clean” high-level object-oriented
APIs. Consequently, actual operations coded as subclasses
of Action invoke few JVM instructions with little execution
overhead each, thus encouraging the JIT compiler to compen-
sate the interpretative overhead by aggressive inlining and

abstract class Action {
public abstract void run (State state);
// ...

}

Figure 19: Threaded code substep; interpreter

class State {
public Action pc;

public final Object[] registers generic ;
public final double[] registers double ;
public final int [] registers int ;
public final boolean[] registers bool ;

public final boolean[] registers control ;
}

Figure 20: Interpreter state

specialization. Interpreting sequentialized SSA code with
control flow requires only a few small changes, most notably
of course the addition of conditional branch operations.

The interpreter, instantiated with the preprocessed code
and register layout of a component, is encapsulated behind
the Template interface. It can be mixed transparently with
other means of implementation, as long as they use the
Source API for communication.

The threaded code approach fulfills the requirement for
extensible instruction sets nicely. All that is needed to add a
new instruction (possibly even at runtime) is a new subclass
of Action that mutates a State object accordingly, and a
corresponding rule in the instruction selection procedure of
the interpreter. The Action abstraction also allows for easy
unit testing, tracing and profiling of instruction set extension
candidates.

5.4 Compilation of SSA Form
The threaded code interpreter, while reasonably fast and

very flexible, contains two indirections that cause runtime
overhead on every instruction: dynamic array-based access to
local variables, and virtual method invocation of Action.run.

We have added an “afterburner” code generation phase
that compiles threaded code objects to JVM bytecode. Ded-
icated subclasses of Session, and their factory progenitors
Template and Component, are created for each compiled Sig
component. Local variables are mapped to individual mem-
ber fields of the appropriate primitive type; see Figure 21 for
the S&H example. Instructions are compiled to JVM byte-
code fragments, which are then glued together to implement
Session . action. See Figure 23 in comparison to Figure 10; the
six fragments of the latter correspond to the six statements
of the former. The resulting code can be loaded directly into
the host JVM by a ClassLoader, or stored as class files for
external use. The corresponding JVM bytecode produced
after the experimental SSA sequentialization pass, for the
control flow graph depicted in Figure 18, is not shown. It
contains roughly half as many bytecode instructions, and
leads to very efficient just-in-time compiled machine code;
confer Figure 26 below.

Compilation rules are distributed over the subclasses of
Action. Namely, a method named compile is invoked with

public class ... extends Session {
private double in0 ; // x
private int in1 ; // t
private double out0; // y
private double pre0; // z
private double post0; // z’

// Session method implementations
}

Figure 21: S&H; compiled class

abstract class Action {
// ...
public void compile(CompilationContext ctx);

}

Figure 22: Threaded code substep; compiler

a CompilationContext object that can resolve variables to
JVM constant pool entries, and act as a sink for bytecode
instructions. This design retains as much extensibility and
traceability of the instruction set as possible, even if frag-
mented bytecode generation is somewhat harder to test and
debug than threaded code. The downside is that, because
instruction selection is performed in isolation, the resulting
bytecode contains a number of redundancies, for instance re-
dundant store–load pairs across fragment boundaries, marked
with [*] in Figure 23.

Theoretically, an extra optimization pass on the JVM
bytecode format could be used for cleanup. But we have
found that JVM JIT compilers do that job well already. For
the S&H example, the machine code produced by Oracle’s
Hotspot JVM 1.8.0 20, on a test machine specified in the
following subsection, is depicted in Figure 24.

The redundancy that remains in the depicted machine
code, namely that some patterns are matched twice, stems
from the incongruency of control flow which is parallel in
Sig and sequential on the JVM. A transformation-based
systematic solution notwithstanding, we have found that
existing bytecode-to-native compilers are quite capable of
eliminating the redundancy in simple cases. In particular,
the machine code produced by GCJ 4.8.2 with the -O3 option,
invoked with the same bytecode on the same target machine,
is depicted in Figure 25. Comparison of Figures 24 and
25 illustrates the typical tradeoff between just-in-time and
ahead-of-time compilation: more aggressive use of processor-
specific capabilities (here, SSE2 extensions) for the former,
and more thorough application of expensive optimizations
(here, exhaustive redundant test elimination) for the latter.

Finally, contrast both versions with the machine code pro-
duced by the JVM JIT after SSA sequentialization, depicted
in Figure 26. This just-in-time compiled code is mostly equiv-
alent to the GCJ version, but trades one additional jump for
more code sharing. More importantly, the awkward and su-
perfluous out-of-range case is missing, thanks to type-aware
condition simplification.

protected void action();
Code:

0: aload_0
1: getfield #37 // t
4: iconst_1
5: isub // S?
6: ifne 14
9: iconst_1
10: istore_1 // [*]
11: goto 16
14: iconst_0
15: istore_1 // [*]

16: iload_1 // [*]
17: ifne 28
20: dconst_0
21: dstore_2
22: iconst_0
23: istore 4
25: goto 36
28: aload_0
29: getfield #31 // x
32: dstore_2
33: iconst_1
34: istore 4

36: aload_0
37: getfield #37 // t
40: iconst_0
41: isub // H?
42: ifne 50
45: iconst_1
46: istore_1 // [*]
47: goto 52
50: iconst_0
51: istore_1 // [*]

52: iload_1 // [*]
53: ifne 65
56: dconst_0
57: dstore 5
59: iconst_0
60: istore 7
62: goto 74
65: aload_0
66: getfield #47 // z
69: dstore 5
71: iconst_1
72: istore 7

74: aload_0
75: iload 4
77: ifeq 84
80: dload_2
81: goto 102
84: iload 7
86: ifeq 94
89: dload 5
91: goto 102
94: // abort (t out of valid range)
102: putfield #39 // y

105: aload_0
106: aload_0
107: getfield #39 // y
110: putfield #44 // z’
113: return

Figure 23: S&H; bytecode

action:
mov 0x38(%rsi), %r11d # t
mov %r11d, %r10d
dec %r10d
xorpd %xmm0, %xmm0, %xmm0
test %r10d, %r10d # S?
je .Le
xorpd %xmm1, %xmm1, %xmm1

.La:
test %r11d, %r11d # H?
jne .Lb
movsd 0x28(%rsi), %xmm0 # z

.Lb:
test %r10d, %r10d # S?, again
je .Ld
test %r11d, %r11d # H?, again
jne .Lf

.Lc:
movsd %xmm0, 0x20(%rsi) # y
movsd %xmm0, 0x30(%rsi) # z’
ret

.Ld:
movapd %xmm1, %xmm0
jmp .Lc

.Le:
movsd 0x18(%rsi), %xmm1 # x
jmp .La

.Lf:
abort (t out of valid range)

Figure 24: S&H; machine code (JRE)

action:
movl 48(%rdi), %eax # t
testl %eax, %eax # H?
je .L17
cmpl $1, %eax # S?
jne .L26
movsd 40(%rdi), %xmm0 # x
movsd %xmm0, 56(%rdi) # y
movsd %xmm0, 72(%rdi) # z’
ret

.L17:
movsd 64(%rdi), %xmm0 # z
movsd %xmm0, 56(%rdi) # y
movsd %xmm0, 72(%rdi) # z’
ret

.L26:
abort (t out of valid range)

Figure 25: S&H; machine code (GCJ)

action:
movl 0x38(%rsi), %r11d # t
decl %r11d
testl %r11d, %r11d # S?
jne .Lb
movsd 0x18(%rsi), %xmm0 # x

.La:
movsd %xmm0, 0x20(%rsi) # y
movsd %xmm0, 0x30(%rsi) # z’
ret

.Lb:
movsd 0x28(%rsi), %xmm0 # z
jmp .La

Figure 26: S&H; machine code (JRE, sequential)

6. EXPERIMENTAL EVALUATION
We have tested the performance of both interpreted and

compiled code on the JVM with a simple but nontrivial sound
synthesis application. It implements a digital organ with a
range of four chromatic octaves. Each of the 49 notes consists
of two Sig components, namely a sine wave generator and
an ADSR envelope generator, running at the audio rate of
44.1 kHz and the 64 times slower control rate, respectively.
The precise algorithms are specified in [27]. They translate
to 4 and 54 Sig core operations, respectively.

A hand-coded driver loop runs all 49 notes in quasi-parallel
for full polyphony, and mixes them together according to
input from a MIDI keyboard, for interactive real-time CD
quality output. The resulting audio stream is fed to the
push-based Java audio system. Hence the audio and control
rate clocks operate in pseudo-real time: the control loop
runs at maximal speed (generally much faster than real time)
when there is sufficient space in the audio output buffer, and
blocks when the buffer is full. By limiting the buffer size,
latency is bounded to 10–100 ms.

The actual time spent in computation (i.e. component exe-
cution and mixing) has been recorded with the precision and
accuracy of Java System.nanoTime(). Dynamic scheduling
optimizations that turn off silent voices have been deacti-
vated for the sake of regular load and stable measurements.
On our test system, with a Core i5-3317U CPU at 1.7 GHz,
Ubuntu 14.04 OS, and Oracle JDE 1.8.0 20, we have observed
effective rates (number of samples produced divided by time
spent computing) of 229±3 kHz for interpreted code, and
2740±60 kHz for compiled code, respectively.12 These figures
translate to an average effort of about 152 and 13 CPU cycles
per voice-sample, or to a real-time load of 19.6 % and 1.6 %,
respectively. The speedup by compilation to bytecode is a
factor of 12. By contrast, gains for sequentialized code are
relatively insignificant, due to scarce use of control flow in
the computationally critical components. All experiments
use only a single CPU core for Sig computations, although
JVM system threads may run concurrently on other cores.

In summary, the näıve interpreted version, on stock hard-
ware and without JVM tweaking, performs fast enough for
a real-time demonstration by a comfortable margin. The
compiled version has enough computational reserves that
it can be expected to scale up to audio synthesis tools of
artistically acceptable quality.

7. CONCLUSION
The Sig language is specific, in the sense that it trades

semantic regularities for algorithmic restrictions that are ac-
ceptable only for a particular class of computational patterns,
and hence poses specific problems for effective and efficient
execution. On the one hand, the purely and totally func-
tional approach, and the rigid minimalist control flow enable
or simplify a great number of analyses and optimizations.
On the other hand, the prototype nature of the current im-
plementation and applications, and the fact that type system
and instruction sets are far from fixed, calls for a compiler
design that is more a laboratory environment than a closed
tool.

As a notable practical lesson from the construction of
the Sig compiler, we have corroborated the hypothesis that
bytecode platforms are suitable backends for rapid language

12Reported errors are median absolute deviations.

prototyping. Many errors in the code generator have been
detected statically by standard JVM bytecode verification
tools. In other cases that fail at runtime, debugging is fairly
convenient, even without a working generator for symbol
tables or source location metadata.

The Java platform has extensive support for real-world
interaction, in terms of on-board libraries that work out-of-
the-box and with decent efficiency/safety tradeoffs, for GUIs
(javax .swing), sampled audio output (javax .sound.sampled)
and MIDI audio input (javax .sound.midi). With these, tan-
gible live demonstrations of Sig programs, as in [27, 29], can
be constructed with moderate effort.

The JVM JIT compiler allows to explore the interpreter–
compiler continuum in search for a sweet spot for the pro-
totype implementation of a novel language rather freely, by
keeping the performance penalties for higher levels of backend
abstraction within reasonable limits.

7.1 Related Work
The “French school” family of synchronous languages (Sig-

nal, Lustre, Esterel, etc.) have set the precedent by demon-
strating how data-stream programming can be given sound
semantics and expressive frontend notations, although the
early family members are remarkedly low-level. Lucid Syn-
chrone [7] has successfully added features of high-level func-
tional programming, in particular algebraic data types, pat-
tern matching and a form of higher-order programming. How-
ever, unlike Sig, it is not a purely functional language, and
therefore has more complicated semantics with respect to
control flow and nested functions, and fewer exploitable de-
grees of freedom in implementation. On the other hand,
Lucid Synchrone has very expressive features for reactive
programming that could be put to good use in a future
extension of the Sig frontend language.

On the pure side, functional reactive programming [31],
in particular its discrete-time continuation-based implemen-
tation [19] and arrowized theoretical framework [12], mark
the state of the art. We have decided to pursue a different
path for many reasons discussed in [26], for instance better
support for domain experts in non-embedded DSLs, better
integration with pattern matching, and potential interoper-
ability with legacy execution environments and algorithmic
code bases.

Some sporadic domain-specific approaches outside the
aforementioned families also deserve mention: Faust [21] is
a pure, combinator-based data-stream expression language,
compiled to C++, with concise operation set and seman-
tics, although it does suffer from scalability issues, and an
unfortunate coupling of delay and concrete network layout.
Hume [11] has pioneered several ideas that have influenced
the design of Sig, most notably the central role of pattern
matching, and the conscious and layered tradeoff of expres-
sivity versus analytic and operational properties for abstract
low-level programming.

Functional embedded hardware description languages such
as Hydra [20] and Lava [3] make elegant use of functional
abstraction, and solve code generation problems for low-level
target platforms elegantly, although they inherit too much
of the bells and whistles of Haskell to meet our requirements
of semantic purity.

Although the connections have not be researched thor-
oughly yet, we expect to relate our frontend approach to
configuration of complex networks by staged metaprogram-

ming to its recent, independent use in high-performance
computing [15]. At the backend we expect to benefit from
recent research done on tracing just-in-time compilation [10],
where SSA-based program representations with mostly non-
branching control flow are pervasive.

7.2 Future Work
Many directions for particular future work have already

been mentioned in passing. The overarching goal is to turn
Sig into a comprehensive tool for sound, safe and effective
data-flow programming, spanning a wide variety of notations,
application domains and target platforms.

At the frontend, the obvious next steps are extensions for
nontrivial type and module systems, as well as notation sup-
port for reactive and higher-order programming. A possible,
controlled relaxation of the ban on recursive computations
will also be investigated.

On the theoretical level, the analysis of worst-case execu-
tion times and multi-rate systems, and the relationship of
Sig semantics to axiomatic theories deserve our attention,
as well as the identification of a hierarchy of language layers
with associated properties and target domains.

At the backend, our preliminary encouraging results on
leveraging the JVM platform for efficient execution need to
be corroborated and scaled to more complex case studies.

The semantics of Sig allows for the parallel decomposition
of independent data-flow subnetworks. Correspondingly, the
passive and thread-safe execution model of Sig components
allows their flexible mapping to several cores. However, for
actual parallel speedup, static and/or dynamic load balancing
would be required.

Last but not least, we plan to investigate the potential of
running Sig on platforms obeying the Real-Time Specifica-
tion for Java (RTSJ), for embedded hard real-time applica-
tions. There we expect very interesting results, since many
of the problems regarding memory allocation [4] and locking
[22] typical for imperative frontend languages are avoided by
the semantic model of Sig.

By design of the Sig language, the operation rate of com-
ponents is abstracted from in its definition. This allows code
to be reused across various rates, but also implies that checks
whether an actual execution can meet its real-time latency
bounds are not integrated in the compilation process. We
envisage a cooperative solution where the Sig compiler re-
lies on off-the-shelf worst-case execution time analysis tools,
which are expected to be aided greatly in their job by the
minimalistic control flow structure of compiled Sig programs.

8. ACKNOWLEDGMENTS
Thanks to members of the software technology group at

Chalmers University for helpful discussions.

9. REFERENCES
[1] B. Armstrong and R. Eigenmann. Challenges in the

automatic parallelization of large-scale computational
applications. In Proc. of SPIE 4528, pp. 50–60, 2001.

[2] J. Backus. Can programming be liberated from the von
Neumann style? Comm. ACM, 21(8), 1978.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in haskell. In Proc. ICFP 1998, pp.
174–184, 1998.

[4] G. Bollella, el al. Programming with non-heap memory
in the real-time specification for Java. In Proc.
OOPSLA 2003, pp. 361–369, ACM, 2003.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice.
Lustre: A declarative language for programming
synchronous systems. In Proc. POPL 1987, pp.
178–188. ACM, 1987.

[6] P. Caspi and M. Pouzet. A co-iterative characterization
of synchronous stream functions. ENTCS, 11:1–21,
1998.

[7] P. Caspi and M. Pouzet. Lucid Synchrone, a functional
extension of Lustre. Tech. rep., Université Pierre et
Marie Curie, Laboratoire LIP6, 2000.

[8] W. Citrin, R. Hall, C. Santiago, and B. Zorn.
Addressing the scalability problem in visual
programming through containment, zooming and
fisheyeing. In Proc. Aerospace Conf., volume 4, pp.
189–202. IEEE, 1998.

[9] ESA. ARIANE 5 Flight 501 Failure Report by the
Inquiry Board, 1996.

[10] A. Gal, et al. Trace-based just-in-time type
specialization for dynamic languages. SIGPLAN Not.,
44(6):465–478, 2009.

[11] K. Hammond and G. Michaelson. The design of Hume:
A high-level language for the real-time embedded
systems domain. In LNCS 3016, pp. 127–142.
Springer-Verlag, 2003.

[12] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson.
Arrows, robots, and functional reactive programming.
In LNCS 2638, pp. 159–187. Springer-Verlag, 2003.

[13] J. Hughes. Why functional programming matters.
Computer Journal, 32(2), 1989.

[14] J. Hughes. Programming with arrows. In LNCS 3622,
pp. 73–129. Springer-Verlag, 2005.

[15] O. Kiselyov, C.-C. Shan, and Y. Kameyama. Bridging
the theory of staged programming languages and the
practice of high-performance computing. Tech. Rep.
2012–4, National Institute of Informatics, Japan, 2012.

[16] M. Lepper and B. Trancón y Widemann. Optimization
of visitor performance by reflection-based analysis. In
LNCS 6707, pp. 15–30. Springer-Verlag, 2011.

[17] H. Liu, E. Cheng, and P. Hudak. Causal commutative
arrows. J. Funct. Program., pp. 467–496, 2011.

[18] A. Loth. Synthese von Kontrollfluss für eine synchrone

Datenflusssprache. Master’s thesis, Ilmenau University
of Technology, 2015.

[19] H. Nilsson, A. Courtney, and J. Peterson. Functional
reactive programming, continued. In Proc. Haskell
Workshop, pp. 51–64. ACM, 2002.

[20] J. O’Donnell. Hydra: hardware description in a
functional language using recursion equations and high
order combining forms. In The Fusion of Hardware
Design and Verification, pp. 309–328. North-Holland,
1988.

[21] Y. Orlarey, D. Fober, and S. Letz. Syntactical and
semantical aspects of Faust. Soft Comput.,
8(9):623–632, 2004.

[22] F. Pizlo, D. Frampton, and A. L. Hosking. Fine-grained
adaptive biased locking. In Proc. PPPJ 2011, pp.
171–181, ACM, 2011.

[23] G. Rouleau and S. Popinchalk. Initializing parameters.
Matlab Central Blog, 2008. Retrieved 2013-12-31.

[24] J. M. Spivey. The Z Notation: a reference manual.
International Series in Computer Science. Prentice Hall,
1988.

[25] W. Taha and T. Sheard. MetaML and multi-stage
programming with explicit annotations. Theor.
Comput. Sci., 248(1-2):211–242, 2000.

[26] B. Trancón y Widemann and M. Lepper. Foundations
of total functional data-flow programming. In EPTCS
153, pp. 143–167, 2014.

[27] B. Trancón y Widemann and M. Lepper. Sound and
soundness – practical total functional data-flow
programming [demo]. In Proc. FARM 2014, pp. 35–36.
ACM Digital Library, 2014.

[28] B. Trancón y Widemann and M. Lepper. Laminar data
flow: On the role of slicing in functional data-flow
programming. In Draft Proc. TFP 2015. INRIA, 2015.

[29] B. Trancón y Widemann and M. Lepper. The Shepard
Tone and Higher-Order Multi-Rate Synchronous
Data-Flow Programming in Sig. In Proc. FARM 2015,
ACM Digital Library, to appear 2015.

[30] T. Uustalu and V. Vene. The essence of dataflow
programming. In LNCS 3780, pp. 2–18.
Springer-Verlag, 2005.

[31] Z. Wan and P. Hudak. Functional reactive
programming from first principles. SIGPLAN Not.,
35(5):242–252, 2000.

	Introduction
	Outline and Contributions

	Sig at Work
	Design Considerations
	Frontend
	Core
	Delay Elimination
	Control Elimination

	Backend
	Composition of Components
	Global Control
	Inter-Component Communication
	Total Computations

	Compiler Architecture
	Runtime Interface
	Type Specialization
	Data Interfaces
	Component Instantiation

	Code Generation Strategies
	State Transition
	Parallel and Sequential Evaluation
	Interpretion of SSA Form
	Compilation of SSA Form

	Experimental Evaluation
	Conclusion
	Related Work
	Future Work

	Acknowledgments
	References

