
Laminar Data Flow: On the Role of Slicing in
Functional Data-Flow Programming

Research Paper

Baltasar Trancón y Widemann1,2 and Markus Lepper2

1 Technische Universität Ilmenau, Ilmenau, DE
2 <semantics /> GmbH, Berlin, DE

Abstract. We use the concept of laminar flow, as opposed to turbu-
lent flow, as a metaphor for the decomposition of well-behaved purely
functional data-flow programs into largely independent parts, necessi-
tated by aspects with different execution constraints. In the context of
the total functional data-flow language Sig, we identify three distinct
but methodologically related implementation challenges, namely multi-
rate scheduling, declarative initialization, and conditional execution, and
demonstrate how they can be solved orthogonally, by decomposition us-
ing the standard program transformation technique, slicing.

1 Introduction

In fluid dynamics, laminar flow is an ideal transport process where a fluid flows
in essentially parallel layers (lamina) at different speeds, without turbulent inter-
ference. We borrow the term as a useful metaphor for the benevolent properties
of purely functional data-flow programs, in particular their decomposeability.
Form this perspective, we investigate the various uses of decomposing a data-
flow network into lamina, in the context of an effective language implementation.
All our uses are concerned with lamina delimited by a functional aspect, that
is, a data-flow closure of variables of interest. As such, they are instances of the
well-known program transformation technique slicing [16].

This semiformal presentation retains a high level of abstraction from technical
details throughout, in order to make the conceptual uniformity and naturality
of the approach stand out, and the overarching story concise and readable. The
issues of formally precise definition, soundness, completeness and complexity of
methods are out of scope here, to be discussed in technical companion papers.

The structure of this paper and its novel contributions are organized as fol-
lows: Section 2The Sig Languagesection.1.2 introduces the basic semantic design
of the Sig language, as defined in previous technical papers [13]. Section 3Slicing
for Multi-Rate Data Flowsection.1.3 specifies the treatment of multi-rate sys-
tems in Sig, so far characterized largely by example [15]. Section 3.1Transparent
Local Schedulingsubsection.1.3.1 gives a novel local scheduling algorithm for
Sig multi-rate systems. Section 4Slicing for Declarative Initializationsection.1.4
summarizes the Sig approach to delayed computations from [13], and then gives

a semiformal but complete specification of the novel extension to non-literal
initial value expressions. Section 5Slicing for Conditional Executionsection.1.5
motivates and discusses a transformation to conditionally executed code, so far
published only in German as a Master’s Thesis [9].

2 The Sig Language

The Sig language is a novel, total, purely functional data-flow programming lan-
guage [12,13]. Its aim is to allow the expression of synchronous data stream
processing algorithms in an elegant declarative style, with semantics clean and
simple enough for domain experts without professional computer science back-
ground to experience programming as an orderly mathematical activity rather
than an exercise in some ‘black art’ of tinkering and hacking.

Central to the semantics of Sig is a compositional view on synchronous data-
flow computations, no matter whether primitive operations, subclauses, or com-
plex networks, as clocked Mealy machines with private state. In [13] we have
specified the formal semantics framework and a stack of program transforma-
tions that normalize higher-level functional programs into machines, compare
also [8]. State spaces are inferred from the use of quasi-functional delay opera-
tors; the programmer never manipulates state variables directly.

Data flow is synchronous in a strict sense: all values are communicated as
if by shared memory, where many readers and a single writer are arbitrated by
an external clock. Race conditions, messages, events and other observable side
effects are forbidden by the semantics. The following additional features of Sig
semantics are of particular interest for the present paper, as they each give rise
to a different application of program slicing:
1. The writer and reader of a variable are implicitly synchronized, that is, oper-

ating at the same rate; the writer always before the reader for a given clock
tick. The exceptions are up- and downsampling connectors which transmit
data between subnetworks operating at distinct, interleaved clock rates.

2. A delay operator applied to a data stream prepends one (or more) values to
the stream. These initial values may be defined by complex expressions, with
the possibility to share work between the initialization and running phase
of a network, and the obligation to check for causality violations by initial
values depending on on-line input.

3. Sig expressions are totally functional, that is, they produce no side effects
during their evaluation (pure), and they may neither diverge nor abort nor
block (total). Thus control flow can be implemented transparently, either
as conditional evaluation of alternative subexpressions, or as ‘posthumous’
selection of alternative subresults, whichever is more convenient. The trans-
formation of functional front-end programs into the machine representation
naturally yields the latter, but many sequential execution platforms favor
the former.

The following sections explore these applications in turn, in the same order as
they occur in the Sig compiler pipeline.

[
x→ s

s := 0 ; (s+ x)

] [
x→ s

s := (0 ; s) + x

]

Fig. 1. Simple Sig component definitions

Since the actual front-end notation of Sig is irrelevant for the present discus-
sion, we present example programs in pseudocode.

Components are the first-class citizens of the language. They can be thought
of as stream-processing functions, but in contrast to lambda expressions, inputs
and outputs are notated symmetrically; both are named and can occur in any
multiplicity. We enclose component definitions in brackets, enumerate inputs and
outputs without giving their types, separated by a line from a block of assign-
ments that constitutes the component body, and use mathematical operators
and constants with their obvious semiformal meaning. For instance, the exam-
ple components depicted in Fig. 1Simple Sig component definitionsfigure.1.1 each
have a single input x and output s, respectively, and operate on some unspecified
numerical data type.

We write i ;s for the initialized single-step delay operator with initial element
i prepended to delayed stream s (sometimes written fby or � in other data-
flow languages). That is, if the expression s attains the stream of values sn for
n = 0, 1, . . . , then t = i ; s attains values tn where t0 = i and tn+1 = sn. For
instance, the two examples in Fig. 1Simple Sig component definitionsfigure.1.1
each define a component that outputs a cumulative sum s of its input stream x.

In the left component, the sum is initially zero, and each input element
is added by the next clock tick. Hence this version has a latency of one tick,
whereas the right component is latency-free; each input element contributes to
the sum immediately. That is, sn =

∑
k<n xk, or sn =

∑
k≤n xk, respectively.

Note the pattern of delayed feedback that is ubiquitous in synchronous data-flow
algorithms; other forms of recursion are forbidden in Sig. Component bodies are
understood as systems of equations; evaluation order is implicitly constrained
by data-flow dependencies only.

3 Slicing for Multi-Rate Data Flow

Algorithms implemented in Sig are on-line side-effect-free computations on data
streams. Streams are accessed in a very disciplined way: there is no random
access, only the element associated with the current clock tick is available, and
if past elements are needed they must be retained explicitly, using delay. In
summary, data flow behaves as if each conceptual stream is realized as a single
clocked buffer variable.

While this model of communication is rather restrictive, it is very easy to
grasp and use correctly and reliably, and there are various different application
domains where algorithmic requirements fit this pattern neatly. In particular,

Sig algorithms can run in real time, given sufficient computational resources, be-
cause they never violate causality or productivity: values may never depend on
the future or circularly on the present, nor take infinitely many steps to compute.
We have demonstrated the use of the Sig language and its Java-based execution
system in moderate real-time settings by creating a simple but nontrivial, poly-
phonic live audio synthesis system with interactive MIDI input [14].

The audio domain has a characteristic feature shared by many other real-
time application fields: subsystems operate at various rates, with the slow parts
controlling parameters of the fast parts (modulation), and the fast parts in turn
providing summary information to the slow parts for feedback (aggregation). For
instance in audio parlance,

– wave generators operate at audio rate, such as 44 kHz (CD), 96 kHz (studio);
– modulators of parameters such as pitch, volume and filter shape operate at

control rate, defined as either a fraction, such as 1/64, of audio rate, or as a
fixed rate, such as 1 kHz;

– notes and other sequencer events are controlled at a yet much slower rate,
such as the MIDI resolution of 24 per quarter note, or the infamous 120 bpm
‘techno’ beat;

– some computations concern only initialization, and operate at rate zero.

Data-flow networks written in Sig are not declared explicitly to operate at
particular rates. Rather, they constrain usable rates implicitly at two different
levels of abstraction:

– The abstract program itself imposes a system of qualitative constraints, that
is, equations and inequations between the rates of inputs and outputs, by its
formal synchronization properties.

– Any concrete implementation imposes additional quantitative constraints,
that is, ranges of achievable rates, by its technical throughput limits.

Since the latter can only be discussed properly in very detailed technological
context, we focus here on the former, which can be understood in terms of a few
language primitives and a static analysis.

The default behavior of primitive operations in Sig is to synchronize their in-
and outputs. Assume that a program has been reduced to a core representation
in static single-assignment (SSA) form, as discussed in detail in [13]. Then any
assignment of the form

y1, . . . , yn := f(x1, . . . , xm)

that is, any primitive hyperedge of the data flow graph, induces equations on
the rates of all concerned variables:

R(x1) = · · · = R(xm) = R(y1) = · · · = R(yn) (1)

It follows for a whole network, that variables are synchronized if and only if they
are connected by a path; data-independent subsystems can run at independent

rates. However, this does not yet allow for interference such as modulation or
aggregation. To this end, we add directed resampling primitives to the language.
The operation

y := upsample(x)

is a functional identity, such that x = y holds instantaneously at all times, but
y is allowed to be (re)used at a faster rate than x is produced.

R(x) ≤ R(y) (2)

Note that data flow from slow to fast subsystems is taken as instantaneous: when-
ever clock ticks for x and y coincide, y reflects the new value of x immediately.
This also allows us to subsume constant values consistently as data streams of
rate zero, provided that all clocks begin to tick simultaneously at initialization
time of the system (‘big bang’).

By contrast, the converse operation

y := downsample(i, x)

allows y to be used at a slower rate than x is produced. Namely, at each clock
tick of y, the most recent value of x is observed. Whenever clock ticks for x
and y coincide, y reflects the previous value of x. Obviously, the value of y at
initialization time is not determined by x; this is the purpose of the additional,
type-compatible input i; compare the analogous, synchronized expression i ; x.

R(y) ≤ R(x) (3)

The asymmetry of these two operations ensures that the scheduling strat-
egy of subsystems at different rates is independent of the actual program: the
instantaneous data flow at each coincidence of ticks is always from slow to fast.

Note that, when components are composed, their rate constraints accumu-
late. Since all inequalities are non-strict, there composite system is always satisfi-
able. However, it is possible for rates to be equated emergently in the composite,
say, by an inequation R(x) ≤ R(y) arising from one component, and a converse
inequation R(y) ≤ R(x) independently from another component. Resampling
operations along the path are rendered ineffective; the rate analysis pass should
notify the programmer about this potential usage error.

As an example of rate analysis and separation, consider the following mani-
festly multi-rate program:

()→ wave, high
wave := upsample(amp) · sin(phase) m := max(abs(wave), (0 ;m))

phase := 0 ; (phase + α) high := downsample(0,m)
amp := 1 ; (amp · γ)


It produces an oscillation wave with current phase phase and amplitude amp,
which increase arithmetically and geometrically with parameters α and γ, respec-
tively. Since amplitude is a long-term modulating property in relation to phase,

the former is upsampled. Additionally the attained maximum absolute value m
of wave is recorded, and a downsampled copy high provided for monitoring.

Note that this program is not in proper SSA form, because there remain
nested expressions with unnamed intermediate variables. However, these play
no significant role in the rate analysis of the program. We shall take the same
liberty for harmless abbreviation in the following examples.

Note also the references to α and γ, which are parameters of the generic
component definition, and become private life-time constants for each component
instance. They are supplied by the higher-order programming mechanism of Sig,
the details of which are out of scope here.

For the example, straightforward application of rules (1Slicing for Multi-Rate Data Flowequation.1.3.1)–
(3Slicing for Multi-Rate Data Flowequation.1.3.3) finds a synchronous cluster
R1R(wave) = R(phase) = R(m), and both R2 = R(amp) ≤ R1 and R3 =
R(high) ≤ R1. Thus for instance, setting R1 to audio rate, R2 to control rate,
and R3 to the refresh rate of a graphical output device would yield a consistent
real-time execution context.

If different subnetworks are to be actually operated at different rates, they
can no longer be implemented directly as the transition of a monolithic Mealy
machine. Rather, the component should be sliced according to synchronicity, and
each slice translated to machine form independently. To this end, each resampling
operator is split into a fresh input–output pair of matching variables s+, s−,
respectively, and the program is sliced backwards, based on the synchronicity
partition of both original and synthetic outputs.

For our example, we obtain two synthetic variable pairs, up± and down±,
where R(up−) = R2 and R(down−) = R1, and thus the following three subcom-
ponents:


up+ → wave, down−

wave := up+ · sin(phase)
m := max(abs(wave), (0 ;m))

phase := 0 ; (phase + α)
down− := 0 ;m



 ()→ up−

amp := 1 ; (amp · γ)
up− := amp


[

down+ → high
high := down+

]
The runtime scheduler takes care of the ‘anionic’ asynchronous data flow

up− up+ and down− down+ behind the scenes; see Fig. 2Single-rate slices
of example multi-rate componentfigure.1.2. Downsampling is translated to delay
at the operand rate. Note that the third component is trivial and serves only to
mask the synthetic variable down+ behind the original variable high; by contrast,
the second component exposes the previously internal original variable amp as
the synthetic output up−.

3.1 Transparent Local Scheduling

Under certain mild assumptions, the slices of a component for different rates
can be reassembled, as a component operating at the fastest concerned rate.

R1

R2

R3

wave

high

up

down

Fig. 2. Single-rate slices of example multi-rate component

The slower rates are triggered intermittently by an internal, local scheduler,
whose action is transparent to the component’s environment. Local scheduling
may or may not be an option, depending on the technical context and the actual
rate proportions; however, the mere possibility adds to the compositionality
of the language, and hence merits some consideration. Furthermore, it is also
interesting from a purely algorithmic perspective.

Assume that a component operates at a finite number of distinct rates, 0 <
R1 < · · · < Rn. Assume furthermore that these rates are commensurable, that
is in rational proportion: there are integer numbers 0 < ρ1 < · · · < ρn such
that Ri = ρiR0 for some fundamental rate R0, which need not be present in the
component.

Equivalently, let 0 < Tn < · · · < T1 denote the periods of operation, with
Ti = R−1

i . Then there are integer numbers 0 < δn < · · · < δ1 such that Ti = δiT∗
for some atomic period T∗; namely δi = ρ∗/ρi and T∗ = T0/ρ∗, where ρ∗ is the
least common multiple of {ρ1, . . . , ρn}.

By normalization, we obtain rational numbers 0 < π1 < · · · < πn = 1, where
πi = ρi/ρn = δn/δi. The time of the k-th tick of the i-th clock is given as
ti,k = k · δi.

Now assume that it is valid to quantize all clocks at the fastest occurring rate
ρn, as opposed to the atomic rate ρ∗, as long as the causal order is maintained.
When a tick of the (slower) i-th clock falls between two ticks of the (fastest) n-
th clock, say tn,m < ti,k < tn,(m+1), it can be safely quantized to the successor,
since the operational model of Sig explicitly allows instantaneous data flow from
slow to fast subcomponents. From the perspective of the n-th clock, we obtain
the most recent tick of the i-th clock by rounding tn,k first down to a multiple
of δi, then we obtain its quantization by rounding up to a multiple of δn. This
is conveniently expressed as qi,k = δn

⌈
bk · πic/πi

⌉
.

Note that, with respect to the exact tick sequence ti, qi is both rounded up to
a multiple of δn and stretched out to match the pacing of tn = qn; whereas ti is
injective, qi has runs of average length π−1

i . Note also that qi,k ≤ qn,k. Morally,
the i-th component is still assumed to operate at a constant rate, reflected by
the special nullary Sig primitive dt, which evaluates to its own clock period and
is a lifetime constant for each component instance. Unless a component is run

var s := 0
invariant −ρ2 < s ≤ +ρ1
for each step do

let up := s ≥ 0
s := s + ρ1
if up then
s := s − ρ2
step component 1

end if
step component 2

end for

Fig. 3. Component scheduling, Bresenham style

in an embedded context and connected to very hard real-time input/output, the
micro-latency induced by quantification goes undetected.

The local scheduler, which is operated at the fastest rate Rn, needs to per-
form a computation of the i-th subcomponent at its k-th invocation, if and only
if qi,k = qn,k. Conveniently enough, this can be achieved by a variant of Bre-
senham’s algorithm for quantized line drawing [1]. Scheduling a commensurable
two-rate component for one period of its fundamental rate is analogous to draw-
ing a rastered two-dimensional straight line with extent ∆x = ρ2 and ∆y = ρ1:
advancement by one pixel in the x and y dimension corresponds to quantized
clock ticks at ρ2 and ρ1, respectively.

Note that we have 0 < ∆y ≤ ∆x, the base case of Bresenham’s algorithm to
which other cases are reduced. Thus at most one tick at rate R1 happens per tick
at rate R2. The algorithm is adapted by changing the rounding mode, and omit-
ting the main loop such that one turn is performed at each invocation of the com-
ponent, and the slope is extrapolated indefinitely to the right. Fig. 3Component
scheduling, Bresenham stylefigure.1.3 shows the basic algorithm in pseudocode.

For n > 2 components, additional counters s2, . . . , sn−1 can be added. For
rates Ri that also are multiples of, or may be quantized to, Rj for some j < n,
the scheduling problem can be decomposed hierarchically. The latter approach
is generally more efficient, in particular when Rj � Rn.

Fig. 4Top – quantization timelines; n = 3, ρ∗ = 30, interval of 2T0 shown.
Bottom – discrete (clock) time over continuous (real) time; tick sequences ti as
points on identity line (dashed), quantized time qi as step functionsfigure.1.4
shows an example multi-rate ensemble with relative rates ρ = (2, 3, 5), depicting
the evolution of its three clocks over an interval of 2T0.

4 Slicing for Declarative Initialization

From the semantics perspective it is tempting to neglect the initial values of
delayed streams as a minor detail. Indeed, the pattern seen in the preceding ex-
amples, namely delayed feedback to a monoid operation, with the monoid unit

ρ3 = 5
ρ2 = 3
ρ1 = 2

δ3 = 6
δ2 = 10
δ1 = 15

i=1
i=2
i=3

Fig. 4. Top – quantization timelines; n = 3, ρ∗ = 30, interval of 2T0 shown. Bottom –
discrete (clock) time over continuous (real) time; tick sequences ti as points on identity
line (dashed), quantized time qi as step functions.

as the natural initial value, is quite common, and suggests an implicit solution
by inference. Note that some clocked synchronous data-flow formalisms omit the
specification of initial values altogether, for instance Faust [10]. However, not all
common uses of delay fit the bill; an example is given in (†) on p. 10Slicing for
Declarative InitializationAMS.2 below, after a summary of the Sig implementa-
tion of delay [13]. In this section, we discuss a slicing technique to address the
issue.

Sig front-end programs are neutral about whether each name is bound to a
single value or a stream. For the domain of synchronous data-flow algorithms,
this is an elegant and adequate abstraction: virtually all primitive computations
operate element-wise anyway, such that the distinction would provide no insight;
the only, but ubiquitous exception being delay operations.

In the semantics as specified in [13], delay operations are replaced by private
(buffer) state, by a syntax-directed program transformation. The resulting SSA-
style intermediate representation can be read directly as element-wise formal
semantics, namely as the transition rule of a Mealy machine, in the form of a
quaternary relation R ⊆ (S×A)×(B×S), where A,B are the products of ranges
of input (x) and output (y) variables, respectively, and S is the product of ranges
of inferred state variables, in the double role of pre-state (s) and post-state (s′);
see Fig. 5Diagram depiction and syntax for state transitionsfigure.1.5.

In this view, a single-step delay operation is simply the special case of a
square identity δA = IA×A ⊆ (A × A) × (A × A): at each clock tick, the pre-
state becomes output, while the input simultaneously becomes post-state, to be
output in the next cycle, etcetera.

Rx y

s

s′

s / x
R7−→ y / s′

Fig. 5. Diagram depiction and syntax for state transitions.

Q ‖R

Q

R

w

s

y

s′

x

t

z

t′

Q ◦R

Q Rx

s

y

s′

t

z

t′

Q # R

Q

R

xt

s

xt

s′t

st+1

xt+1 yt+1

s′t+1

Fig. 6. Composition axes of transition relations, adapted from [13]

These element-wise transition relations can be depicted graphically and ad-
mit three different meaningful compositions, namely parallel (‖), functional (◦)
and temporal (#) composition, respectively; see Fig. 6Composition axes of tran-
sition relations, adapted from [13]figure.1.6. The desired stream-wise semantics
of a data-flow program is ‘morally’ the infinite temporal replication of the cor-
responding element-wise transition relation:

lim
n→∞

R # · · · #R︸ ︷︷ ︸
n

It takes an initial pre-state and a whole input stream to a whole output stream;
there is no final post-state. Between clock ticks, post-state is fed back to pre-
state. In [13] we have given a rigorous coinductive construction.

However, there is a catch: because the initial states are outside of this seman-
tic interpretation, they can only be given as uninterpreted constants. In practice,
one would certainly like to have the full expression language to denote complex
initial values. Hence one-off initialization and repeated element-wise computa-
tion should be compiled together, and only separated for code generation by

static analysis and slicing. For example, consider the following program
()→ x
x := 1 ; y
y := (a / 2) ; (a · y − x)
a := 2− α · α

 (†)

which computes a very resource-efficient, numerically stable approximation of
the sequence xn = cos(n · α). It uses a magic constant a both at initialization
and at each clock tick. The remainder of this section specifies a general program
analysis and transformation in several steps, interleaved with applications to this
example for immediate illustration.

The embedding of initialization expressions works as follows: For each vari-
able v that is the result of a delay operation,

v := i ; u

perform a statification (sic): introduce a pre–post pair of fresh matching state
variables sv, s

′
v, respectively; then add a pair of statements according to the

semantics of delay given earlier in this section

v := sv s′v := ι(i, u)

where ι is a special primitive, a variant of the well-known φ operator of SSA,
which selects its first operand when evaluated during initialization of the com-
ponent, and its second operand otherwise. For the example, we obtain:

sx, sy / ()→ x / s′x, s
′
y

x := sx s′x := ι(1, y)
y := sy s′y := ι(a / 2, a · y − x)
a := 2− $step · $step


Note the slash notation to enclose the input/output interface in the state context,
as in Fig. 5Diagram depiction and syntax for state transitionsfigure.1.5.

The subsequent static analysis works as follows. Several ‘virtual’ slices are
are formed based on forward or backward data flow:

– The forward slice D (dynamic) for all statements depending on pre-state
and/or input;

– the backward slice I (initial) for all statements affecting post-state, consid-
ering only the first operand of each ι operator;

– the backward slice L0 (loop) for all statements affecting output and/or post-
state, considering only the second operand of each ι operator; this slice is split
into the subslice L of statements also contained in D plus their immediate
data-flow predecessors, and its relative complement ` = L0∩L. The intuition
here is that statements in L/` are directly/indirectly relevant for the loop
phase, respectively.

They yield a multidimensional classification: statements. . .
– in I ∩ L0 are dead (they play no role for output or state);
– in I ∩ L0 are computed for initialization only (they play no role for loop

output or post-state);
– in D∩I are causally illegal attempts to read from a stream during initializa-

tion (they depend on loop input or pre-state but affect initial state), except
for the safe case of ι operations whose first operand is not in D;

– in D ∩ L are recomputed at each clock tick (they depend on loop input or
pre-state and affect output or post-state);

– in D ∩ L are loop invariant, computed at initialization and retained as con-
stants (they do not depend on loop input or pre-state but directly affect
output or post-state);

– in ` are computed privately at initialization, and used by the preceding (they
do not depend on loop input or pre-state but indirectly affect output or post-
state).

The full classification of a statement consists of two binary decisions, namely
{D,D} and {I, I}, and a ternary decision, {L0, L.`}. The classification of a
statement is inherited by its result variable(s).

For the example, we find that x, y ∈ D ∩ I ∩ L and s′x, s′y ∈ D ∩ I ∩ L and
a ∈ D ∩ I ∩ L (and its unnamed intermediates in D ∩ I ∩ `). It follows that a
needs to be retained as a constant.

This is achieved by a transformation that introduces synthetic delay with
identical feedback: replace each statement of the form

c := e

where e is in D ∩ L, with
c := e ; c

and apply ι-introduction as above. For the example, we obtain:
sx, sy, sa / ()→ x / s′x, s

′
y, s
′
a

x := sx s′x := ι(1, y)
y := sy s′y := ι(a / 2, a · y − x)
a := sa s′a := ι(2− α · α, a)


The ι-introduction rule has created trivial copy statements. Clean up by

performing copy propagation on statified variables, substituting sv for v, with
one crucial exception: for references to statified variables v in the first operand
of a ι operator, s′v is substituted instead.

For the example, we obtain:
sx, sy, sa / ()→ x / s′x, s

′
y, s
′
a

x := sx s′x := ι(1, sy)
s′y := ι(s′a / 2, sa · sy − sx)
sa := ι(2− α · α, sa)


In the final step, two slices are computed:

– an initialization slice, which retains just the statements affecting post-state,
and replaces each ι operator by its first operand;

– a loop slice, which retains all statements affecting post-state and/or output,
and replaces each ι operator by its second operand.

For the example, we obtain:

sx, sy, sa / ()→ x / s′x, s
′
y, s
′
a

s′x := 1
s′y := s′a / 2
s′a := 2− α · α
x := sx

s′x := sy

s′y := sa · sy − sx

s′a := sa


where initialization and loop are above and below the dashed line, respectively.

The execution model assumes that the initialization slice is evaluated once;
afterwards and for conceptually infinitely many clock ticks, post-state is fed back
to pre-state and the loop slice is evaluated. Note that, at least for common simple
cases, suitable efficient implementations of state feedback can be suggested by
peephole optimizations: for the example,

– the statement s′a := sa witnesses that a is constant, and can be eliminated
in the obvious way by allocating sa and s′a to the same storage location;

– the statement s′x := sy witnesses that the pair y, x is a buffer queue. While
this particular instance is of trivial size and needs no special attention, longer
queues that are candidates for a ring buffer implementation can be found by
simple flow graph pattern matching.

5 Slicing for Conditional Execution

Sig has no concept of true user-defined control flow, such as jumps, loops or
recursion; the infinite unfolding of output streams is the only means of iteration.
However, the language does have pattern matching constructs as expressive and
general means of dynamic case distinction. Because all Sig expressions are totally
productive (may not diverge element-wise), case distinction can be seen as a
data-flow, rather than control-flow issue: the semantics allows for all alternative
rules to be evaluated concurrently. Such speculative evaluation may fail on a
matching rule because of a refuted pattern on the left hand side. In that case,
the right hand side is taken to evaluate to the special value ⊥, which can be
conceived of as an exception.

In the core language, a special primitive γ is used to guard the actual result
of the right hand side, conditional on the success of matching. From the set of
alternatives, a second special primitive ϕ selects a successful rule, conceptually

catching the exceptions. All other operations are strict with respect to ⊥. Our
usage of ϕ differs from its classical namesake φ in SSA in the sense that choice
is not based on incoming control flow; instead it is generally nondeterministic
but avoids ⊥ whenever possible. If rules are mutually exclusive and jointly total,
as they are in a normalized well-defined pattern-matching expression, then the
final result is total and deterministic. A static analysis enforces that ⊥ is never
leaked from a component.

As in the previous section, we interleave general descriptions of compilation
tasks, and particular illustrations. For example, consider the following Sig pro-
gram, which defines a wave generator component with an additional switch to
silence the output, a gate in audio parlance: gate → wave

wave := if gate then sin(phase) else 0
phase := 0 ; (phase + α)


The if-then-else construct is syntactic sugar for pattern matching on the enu-
merated datatype {true, false}. Pattern matching is eliminated according to a
nontrivial syntax-directed program transformation duly specified in [13], and
replaced by a network of ϕ and γ operators. For the example, performing also
statification of delay as described in the previous section, we obtain:

s / gate → wave / s′
wave := ϕ(a, b)

a := γ(sin(phase), gate = true)
b := γ(0, gate = false)

phase := s s′ := ι(0, phase + α)


The ϕ operator selects the output value from either of the complementary
branches a and b. Each of these is given by a γ operation that yields the first
operand if the constraint expressed by the other operand(s) is satisfied, or ⊥
otherwise. In a well-typed context, exactly one branch is defined (non-⊥) at all
times. For the example, by copy propagation and initialization slicing as de-
scribed in the previous section, we obtain:

s / gate → wave / s′
s′ := 0
wave := ϕ(a, b)

a := γ(sin(s), gate = true)
b := γ(0, gate = false)
s′ := s+ α


On massively parallel execution platforms, such as FPGAs, it is perfectly

reasonable and efficient to evaluate both branches independently and implement
ϕ as a multiplexer. From this perspective, the whole body of a component is just a
single basic block. By contrast, on more conventional sequential platforms, such

as ordinary CPUs and virtual machines, it is often desirable to save time by
evaluating only relevant branches. To this end, statements should be organized
in smaller basic blocks guarded by conditional branching instructions, as usual
for conventional sequential imperative languages.

The Sig compiler, which currently targets the Java virtual machine platform,
has an experimental pass for automatic sequentialization of programs with ϕ
and γ operations, thus converting data flow into control flow. It works roughly
as follows [9]:
– For each variable, determine the condition under which it is defined. Since

the only sources of undefinedness are failed pattern-matching operations,
this is a straightforward backwards data-flow analysis. The result is a posi-
tive propositional formula, where pattern matching primitives, γ and ϕ con-
tribute literals, conjunctions and disjunctions, respectively.

– Group statements according to the definition conditions of their results.
– Nest groups according to logical implication of their conditions. Simplify

nested conditions relative to their parents.
– Split each group into as few basic blocks as possible, such that inter-group

data-flow dependencies do not connect blocks circularly.
– Guard the entry into each basic block by conditional branching.
– Re-interpret ϕ operations as their traditional SSA φ counterparts.
– Optionally, follow up with a standard SSA cleanup pass, which attempts

to allocate all operands of a φ operation to the same storage location, thus
eliminating it completely; otherwise, the set of φ operations at the beginning
of a basic block is transposed to a set of simultaneous moves at the end of
each predecessor block [5].

Note that it may appear simpler to sequentialize case distinctions directly as
they appear in the front-end syntax. But code transformations such as common
subexpression elimination and algebraic simplification are dramatically effective
on the pure data-flow form, and can disrupt the original block structure.

For the example, on the whole we obtain a sequential program that can be
described by the following pseudocode with conditional execution:

s / gate → wave / s′
s′ := 0
wave := sin(s) if gate = true
wave := 0 if gate = false

s′ := s+ α


Note that both a and b have been re-allocated to wave, and all administrative
moves have been eliminated thereby.

It follows that the, possibly expensive, expression sin(s) is only evaluated
when necessary. However, this example is misleading about the generality of the
approach as outlined above: it depends crucially on all conditional statements
being stateless primitives; if calls to dynamically bound, potentially stateful sub-
components are allowed, as they are in full Sig, then naïve conditional execution
is no longer safe.

Consider a variation of the preceding example, where the waveform shape is
no longer a pure function, but a statically non-fixed stream generator component
reference: [

gate → wave
wave := if gate then shape() else 0

]
This can be seen as a modularization, where the concerns of wave generation,
including private phase state, and of gate operation are separated. The original
form is restored by plugging in the following simple generator: ()→ wave

wave := sin(phase)
phase := 0 ; (phase + α)


The problem with this ‘morally equivalent’ situation is that, by design, the

component instance state referred to by shape is private, and the output and
transition operations are tied up together in a monolithic quaternary machine
relation, as discussed in the preceding section. Hence the call to the subcom-
ponent cannot be assumed to be side-effect-free, and hence it cannot be simply
omitted at some clock ticks, lest spurious local time-freezes arise. For the ex-
ample, the phase of the generator would simply stop whenever the gate is shut
down, which may or may not be pragmatically acceptable depending on context,
but is certainly not in accordance with the principle of least surprise.

A number of partial or universal solutions to this dilemma are conceivable:

– Simply call subcomponents unconditionally, wasting any opportunity for
inter-component work saving.

– Record statelessness in the type system; call only manifestly stateless sub-
components conditionally.

– The original version that has no issues can be restored by inlining; simply
defer code generation until parameters are bound.

– Generally separate state transition and output production, delegate the for-
mer to a central scheduler. However, separation can be difficult because of
arbitrary data-flow inter-dependencies, and decentral solutions are decidedly
more light-weight and elegant.

– Create an alternative and more efficient, tacit variant of each component, to
be used under conditions where the outputs are not needed.

The last solution has little impact on our execution model as described before,
and good modularity. Furthermore, it can be implemented by straightforward
program slicing, namely as the backward slice of all statements affecting post-
state, with no outputs. For the simple wave generator, after initialization slicing
we obtain the component on the left, and its tacit variant on the right:

s / ()→ wave / s′
s′ := 0
wave := sin(s)

s′ := s+ α


 s / ()→ () / s′
s′ := 0
s′ := s+ α



Note that, just like in the monolithic original example, the tacit variant saves
work by not computing sin(s). The two component definitions are understood
to be instantiated together, and share state.

The sequentialization algorithm can be fixed to support stateful subcompo-
nents by adding the following clause:

– After grouping statements by condition, for each statement that calls a sub-
component c, add a corresponding call to the tacit variant c0 under the
complementary condition.

Note that, since all condition literals are about closed algebraic datatypes, the
complement of a condition is again a finite positive formula. The rule is sound
but redundant also for unconditional calls; the additional tacit call is unreachable
by construction.

For the modularized example, we obtain:
gate → wave
wave := shape() if gate = true

() := shape0() if gate = false
wave := 0 if gate = false


In general, components may have more than one output variable. In that

case, there are candidates for intermediate variants between the full and the
tacit version; namely one for each subset of outputs. Each of these variants can
be obtained by the same straightforward slicing policy. But because of expo-
nentially growing number of combinations and diminishing relative gains, we
do not envisage a static exploration. Nevertheless, intermediate slices may occur
dynamically on execution platforms supporting run-time program specialization.

6 Conclusion

6.1 Related Work

The design of Sig draws on inspirations and results from many paradigms. Sev-
eral characteristic features are inherited from the ‘French school’ of synchronous
languages; in particular we are indebted to Lucid Synchrone [2] for the initialized
delay operator and implicit handling of (multi-)rate. However, Lucid suffers from
being based on an impure functional core language. Faust [10] has pioneered the
virtue of purity and its benefits in powerful code transformations. Functional
reactive programming (FRP) based on the theory of arrows [6], provides many
of the elegant core properties we aim at, although in a more abstract and gen-
eral, and less down-to-earth setting. Extensions of its axiomatic theory exists
to deal with advanced features such as complex initialization and control flow,
namely as causal commutative arrows [8] and arrows with choice [7], respectively,
although a grand unifying picture remains elusive.

There are remarkably few attempts to apply slicing to functional or data-
flow languages: Ganapathy and Ramesh apply slicing to a statechart variant [4].

Their definition of a slice is based on behavioral equivalence with respect to one
selected output signal and thus quite different from ours. Clarke et.al. [3] apply
slicing to VHDL, a declarative hardware description language. Astonishingly,
they take the detour of converting VHDL into an imperative language (C) and
then apply a commercial slicing tool, instead of exploiting the functional aspects
of VHDL. A positive example of applying slicing to pure functional programs
by pure functional means is due to Rodrigues and Barbosa [11]; while they
operate very elegantly on an abstract semantic formalism (Bird–Meertens), they
cannot promise that their approach does scale, what can easily be shown for our
approach, which is syntax-directed and thus more directly applicable.

For the embedding of explicit case distinctions in functional data-flow for-
malisms, see [?] and [7] for monads and arrows, respectively.

6.2 Summary and Outlook

Because of the rigorously puristic and mathematically elegant design of the Sig
semantics framework, very basic and easily implemented, data-flow-based pro-
gram analyses and transformations go a long way. We have demonstrated the
wide applicability of slicing transformations to a number of conceptually in-
dependent issues: advanced support for high-level front-end features, such as
multi-rate networks with resampling; necessary support for orthogonality of ba-
sic features, such as complex expressions and initialized delay; optimized support
for resource-efficient, state-transparent embedding of modular subcomponents.

The whole Sig compiler pipeline is a prototype and subject to ongoing re-
search and development at various ends. Of the slicing applications we have
presented here, initialization slicing is stably implemented in the current version
of the compiler. Tacit slicing is implemented in principle, but its practical use is
deferred pending the integration of the very recent, externally developed sequen-
tialization pass. Multi-rate slicing is in the process of implementation, and the
current main focus of our efforts, since it would allow us to raise our demonstra-
tions in the application domain of audio and digital music [14] to a significantly
more sophisticated level. Encouraging preliminary results and a first non-trivial
case study are discussed in [15].

References

1. J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4(1):25–30, 1965.

2. P. Caspi and M. Pouzet. Lucid Synchrone, a functional extension of Lustre. Tech-
nical report, Université Pierre et Marie Curie, Laboratoire LIP6, 2000.

3. E. M. Clarke, M. Fujita, S. P. Rajan, T. Reps, S. Shankar, and T. Teitelbaum. Pro-
gram slicing of hardware description languages. Technical report, Carnegie Mellon
University, 1999.

4. V. Ganapathy and S. Ramesh. Slicing synchronous reactive programs. In SLAP
2002, ENTCS 65(5):50–64, 2002. doi: 10.1016/S1571-0661(05)80440-2

5. S. Hack. Register Allocation for Programs in SSA Form. Phd Thesis, Univer-
sität Karlsruhe, 2007. url: http://digbib.ubka.uni-karlsruhe.de/volltexte/
documents/6532

6. P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional
reactive programming. In Advanced Functional Programming, LNCS 2638, pp. 159–
187. Springer, 2003. doi: 10.1007/978-3-540-44833-4_6

7. J. Hughes. Programming with arrows. In Advanced Functional Programming, LNCS
3622 , pp. 73–129. Springer, 2005.

8. H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows. J. Functional Pro-
gramming, 21:467–496, 2011. doi: 10.1017/S0956796811000153

9. A. Loth. Synthese von Kontrollfluss für eine Synchrone Datenflusssprache. Master’s
thesis, Technische Universität Ilmenau, 2015.

10. Y. Orlarey, D. Fober, and S. Letz. Syntactical and semantical aspects of Faust.
Soft Comput., 8(9):623–632, 2004. doi: 10.1007/s00500-004-0388-1

11. T. Petricek, A. Mycroft, and D. Syme. Extending monads with pattern matching.
In Haskell Symposium 2011, pp. 1–12. ACM, 2011. doi: 10.1145/2034675.2034677

12. N. F. Rodrigues and L. S. Barbosa. Slicing functional programs by calculation. In
Beyond Program Slicing. Dagstuhl Seminar 05451, 2005.

13. B. Trancón y Widemann and M. Lepper. tSig : Towards semantics for a
functional synchronous signal language. In KPS 2011, Arbeitsbericht des Insti-
tuts für Wirtschaftsinformatik 132, pp. 163–168. Westfälische Wilhelms-Universität
Münster, 2011. url: https://www.wi.uni-muenster.de/sites/default/files/
publications/arbeitsberichte/ab132.pdf

14. B. Trancón y Widemann and M. Lepper. Foundations of total functional data-
flow programming. In MSFP 2014, EPTCS 154, pp. 143–167, 2014. doi: 10.4204/
EPTCS.153.10

15. B. Trancón y Widemann and M. Lepper. Sound and soundness: Practical total
functional data-flow programming. In FARM 2014, pp. 35–36. ACM, 2014. Demo
abstract. doi: 10.1145/2633638.2633644

16. B. Trancón y Widemann and M. Lepper. The Shepard tone and higher-order
multi-rate synchronous data-flow programming in Sig. In FARM 2015, pp. 6–14.
ACM, 2015. doi: 10.1145/2808083.2808086

17. M. Weiser. Program slicing. In ICSE 1981, pp. 439–449. IEEE, 1981.

