
The Shepard Tone and Higher-Order Multi-rate
Synchronous Data-Flow Programming in SIG

Baltasar Trancón y Widemann
Ilmenau University of Technology, Ilmenau, DE

baltasar.trancon@tu-ilmenau.de

Markus Lepper
semantics GmbH, Berlin, DE

post@markuslepper.eu

Abstract
The total functional real-time data-flow programming language SIG
features a core layer with elegant denotational semantics, in terms
of Mealy stream transducers and coiterative causal stream functions,
that is convenient for domain experts in the primary application
domains, such as scientific modeling and digital music and event
arts. The core suffices for the implementation of many basic signal
processing components. For the expression of more sophisticated
computations, a second layer of SIG provides additional features,
namely higher-order functional programming and multi-rate syn-
chronicity, reducible by transformational semantics to the core layer.
Here we describe the design of the upper layer of SIG and demon-
strate its usage with the Shepard Tone, a well-known sound synthesis
problem and model of psycho-acoustically paradoxical perception
of relative musical pitch.

Categories and Subject Descriptors D.3.2 [PROGRAMMING
LANGUAGES]: Language Classifications—Applicative (functional)
languages, Data-flow languages; H.5.5 [INFORMATION INTER-
FACES AND PRESENTATION]: Sound and Music Computing—
Methodologies and techniques; J.5 [ARTS AND HUMANITIES]:
Music

Keywords data flow; real time; sound synthesis; dynamic configu-
ration

1. Introduction
The SIG language is a purely functional, total, clocked synchronous
data-flow language. It describes programs for stream processing in
real-time situations, where input and output may be available and
required, respectively, at regular intervals in real time (online), and
where the length of that interval may be reflected as a parameter of
algorithms (time-aware). Possible applications range from reactive
systems, in a context with input devices, sensors or communication
channels, to processors and generators of time-series data, such
as audio signals or dynamic simulations in numerous branches of
science, engineering and digital arts. The SIG programming system
is implemented in Java and currently compiles to the Java virtual
machine platform, although alternative low-level backends are a
matter of ongoing research.

We have recently demonstrated the effective use of the SIG
programming infrastructure for sound synthesis, namely a simple
but nontrivial polyphonic organ simulator, calculated from first
principles [17]. In the present paper, we discuss extensions of the
SIG language for more sophisticated stream processing applications.
We describe the extended language design, and demonstrate the
use of additional features by tackling yet another sound synthesis
problem. In particular, the novel contributions are:

• Higher-order functions are added, a notoriously tricky problem
in systems where all variables are time-dependent [19]. We
tackle it by an unusual application of multi-stage programming
(section 2.)

• The real-time behavior is extended by allowing multi-rate sys-
tems, where data flow can occur at different rates, chosen by
the context orthogonally to the functional definition, subject to
synchronization constraints. We enable this degree of freedom
by static analysis and program slicing (section 3.)

• A historically influential sound synthesis problem of medium
complexity is implemented as a SIG program, and the language
extensions are discussed concretely in terms of their usage in
the example code (section 4.)

The presentation of the example gives a preview on the language
features we are currently research and implementing in the SIG sys-
tem. The status of the implementation is summarized in section 5.1;
see [15] for more details.

1.1 Some Related Work
Evidently, the design of SIG owes much to the “French school” of
synchronous languages such as Lucid Synchrone [3], but takes
different turns with regard to high-level features. On the other
side, the SIG approach is less abstract and more machine-oriented
than the principal contemporary competitors, functional reactive
programming (FRP) languages [7]. We have discussed in [16] how
the formal semantics of core SIG, derived from first principles,
coincide with continuation-based FRP implementations [10]. While
(Haskell-based) embedded solutions such as YAMPA [5] certainly
have their merits, we aim for a self-contained solution with greater
neutrality towards alternative execution models and means, as
discussed elsewhere [15]. In particular, the behavioral semantics as
well as the concrete implementation scheme of SIG aim at similarity,
and ideally practical interoperability, with established systems such
as CSOUND, with improved theory and reliability.

1.2 Core SIG in a Nutshell
In a real-time language that is designed to both support effective
low-level near-hardware implementation, and expressive high-level
symbolic computation, it is a good strategy to do so in a well-
stratified way, by providing a hierarchy of language layers with

+

δ

x
y

z

+
x

y

s

s′

z

+
x

y

s

s′

0

+
x1

y1

+
x2

y2

+
x3

y3

. . .

Figure 1. Cumulative sum component. Top left: mostly element-wise computation, before delay elimination (initial value abstracted);
center left: during delay elimination (pair of identities); bottom left: Mealy step operation, after delay elimination (and copy propagation);
right: coiterative stream semantics (initial value re-attached).

appropriate balance of power and requirements at each of various
levels of abstraction, as has been demonstrated for HUME [6].

The core layer of SIG is a simple functional programming
language [16]. Functions are pure and total; hence observable side
effects, spontaneous events such as messages or interrupts, partially
defined operations and general recursion are conspicuously absent.
All variables are time-dependent; streams arise not as data structures,
but implicitly as the consecutive values of a variable at equidistant
clock ticks. Computations are notated as if instantaneous, and indeed
most operations are stateless and simply repeated independently at
each clock tick. For example, consider the following expression
defining a component that computes the element-wise average of
two input streams, x and y, as its output stream:

avg = {x, y -> (x + y) / 2}

The curly bracket is SIG’s lambda abstraction. The SIG type sys-
tem, which plays only a marginal role in the present paper, is ignored
for the moment for the sake of simplicity. Stream computations be-
yond the element-wise can be expressed by the special operator (;)1,
which delays a stream by exactly one clock tick, prepending a given
initial constant2 value. For example, consider the following expres-
sion defining a component that computes the backward difference
transform of its input stream:

diff = {x -> x - (0 ; x)}

As the only exception to the general ban on recursion, delayed
feedback loops are allowed. However, such loops are at odds with
the anonymity of function results in the lambda-style notation.
Therefore, SIG provides a second abstraction bracket, which names

1 Variously written >> or fby in other synchronous languages.
2 Or relatively constant; see sections 2.2 and 4.1 below.

inputs and outputs symmetrically, and has a body that specifies
the internal data-flow graph as a list of (static single) assignment
statements. For example, consider the following expression defining
a component that computes the cumulative sum of its input stream:

csum = [x -> y where y := (0 ; y) + x]

This latter “box abstraction” is privileged in core SIG, because it
is more general and handles multiple results and non-tree-shaped
data flow more gracefully, although more verbosely. Since many of
the following examples have only a single assignment statement, we
take the liberty to abbreviate to an intermediate form that expresses
feedback with minimal syntactical noise:

csum = [x -> y := (0 ; y) + x]

Delay as a compositional add-on to the operator set increases the
domain of definable stream functions from element-wise to causal
functions: The output values for each clock tick may depend on
past and present, but never on future, input values. Furthermore,
delay operations can be translated to state variables of a Mealy3

state transducer [9, 16]. Since access to past values is only via delay,
no implicit storage of stream elements is required. As a result, all
algorithms expressed in SIG can operate online on streams realized
as real-time mutable variables.

Delay as a syntactic building block is eliminated by conversion
to two-dimensional data flow; not only from input to output, but also
from pre-state and to post-state. Each delay operator in the network
takes the form of a pair of cross-over equations, namely equating
its pre-state and output, and independently its input and post-state.
Thus delayed feedback loops disappear; if any (undelayed) circular

3 Moore machines would be more tolerant to feedback, but at odds with
instantaneous element-wise computation (map) on streams.

data flow remains, the expression is invalid. See [16] for the full
formal specification of the elimination procedure.

For example, consider the graphical depiction of the cumulative
sum component in Figure 1, top left. The delayed expression
0 ; y has been abstracted from its initial value and represented
as z := δ(y). I/O data flow is from left to right. Introduction of
state variables s, s′ yields the intermediate form depicted below,
center left. The pseudo-operator δ is replaced by a pair of identities:
z := s and s′ := y, respectively. State transition data flow is
from top to bottom. Simplification by the delay-derived identities
(copy propagation in program transformation parlance) yields the
final step form depicted below, bottom left. The global semantics
of this element-wise step operation as a stream transformation is
obtained by coiteration; it can be conceived as replication of the
step operation, ω times along the state axis. The initial value of
each delay, previously abstracted, is re-attached as the respective
pre-state of the first step. The result is a causal function between
synchronous infinite I/O streams; see Figure 1, right.

1.3 The Shepard Tone
The Shepard Tone has been described as a scale progression [13],
and later as a continuous tone, that challenge simple psychoacoustic
models of relative musical pitch perception. It has been cited as the
acoustic equivalent of Penrose’s and Escher’s impossible circular
graphical configurations, or the barber-pole illusion. It has been
chosen here as an example, because the stratified nature of its
definition evokes high-order programming as the natural means
for its implementation. See the appendix for a description of the
supplementary audio demonstration file.

The tone is a composite sustained sound, created by superpo-
sition of an ensemble of oscillators. The individual oscillators are
spaced evenly in pitch, a logarithm of frequency, at a harmonic
interval ivl , such as an octave. The pitch of all oscillators increases
linearly over time, at a stepping rate t−1

2 , such that each traverses the
interval ivl in a given period t1 � t2. The proportional resolution
parameter res = t1/t2 is tunable to the available computational
resources and desired smoothness, varying from a discrete scale for
long t2, to a smooth (Shepard–Risset) glissando for short t2. [12]

With recurrence rate t−1
1 , the currently highest oscillator reaches

the maximum pitch pmax and is switched off; likewise a new
oscillator is introduced at minimum pitch pmin, ivl below the
currently lowest oscillator. To keep these two kinds of switching
events synchronous, and the number of live oscillators constant,
the total pitch range should be divisible by the spacing interval:
pmax − pmin = (2r + 1) · ivl , where r is a non-negative integer.
See Figure 2, where r = 1 for simplicity; high-quality realizations
typically have r ≥ 4.

The ensemble of live oscillators can be thought of as a shift
register of size 2r + 1. The switching/shifting events occur at a
rate on the order of one in several seconds, but the Shepard effect
relies on them being imperceptible as discrete events. To this end,
the amplitude envelope of oscillators attains the maximum in the
central interval only, and tapers off gradually, that is synchronously
with pitch at rate t−1

2 , towards the ends of the pitch range, such
that switching occurs below the audible threshold. See Figure 3.
The overall effect of the tone creates the conflicting perceptions
of smoothly increasing pitch on short, O(t2), time scales, but
stationary pitch on long, O(t1), time scales.

The switching regime as described above is actually necessary for
the effect to manifest properly; it is not sufficient to play a loop, say,
of the highlighted rectangular clip in Figure 2: The relative phases
of the oscillators, being integrals of frequency, a transcendental
function (exponential) of pitch, get out of synch during one iteration
of the loop necessarily. It is hence impossible to cut the clip in a

Pitch

Time

pmin

pbase

pmax }
ivl

t1︷ ︸︸ ︷

Figure 2. Shepard oscillator ensemble pitches as multi-valued
function of time.

Amplitude

Pitchpmin pmax

1 ︸ ︷︷ ︸
ivl

r·ivl︷ ︸︸ ︷

Figure 3. Envelope of individual Shepard oscillator as function of
pitch.

way that maintains phase continuity across loop boundaries (along
diagonal lines in Figure 2); any cut results in an audible click.

Of course it is conceivable to evade actual higher-order pro-
gramming by representing the oscillators indirectly by their state
tuples; but we consider higher-order computation with oscillator
components, with the respective phase encapsulated as private state,
a more adequate representation from a software engineering view-
point, with respect to information-hiding modularization, and hence
a more expressive and scalable methodology.

1.4 Temporal Considerations
The Shepard Tone illustrates non-trivial real-time structures that are
characteristic for advanced sound synthesis applications:

Digital audio signal-processing systems traditionally operate syn-
chronously but heterogeneously at several distinct rates, mandated
by the combination of aesthetical and technological requirements.

The highest rate is the audio rate, which should be well above
the Nyquist rate of human frequency perception, in order to avoid
aliasing artifacts. For instance, the standard CD consumer audio
rate is 44.1 kHz, whereas digital sound studios operate at 48 kHz
or 96 kHz. Waveform generator components operate at this rate,
and must be kept extremely simple in all but the most powerful
implementations, because of the considerably hard real-time bounds
on the order of a few microseconds per sample.

Conceptually continuous behavior that is computationally more
expensive than a handful of CPU cycles is implemented by compo-
nents operating at the control rate, which should therefore be below
the audio rate, but well above rates that human perception resolves
as discrete events. For instance, control rate may be fixed at 1/128
of audio rate in low-level implementations with hardware binary
counters, or at 1 kHz in software-intensive systems.

Additional, lower rates may be called for, either technically by
different effort–smoothness trade-offs, or aesthetically by musi-
cal beat quantization and long-scale behavior. (For example, the
switching events in the Shepard ensemble.) Finally, computations
at initialization time of a complex system can be conceived as op-
erating at zero rate, for the sake of a semantically clean, uniform
and reliable approach to initialization, a traditional weakness of the
relevant practical audio programming systems.

Components operating at different rates need to interact without
breaking the synchronous paradigm. In classical, first-order pro-
gramming approaches, the interaction is by data only, and can be
conceived as resampling of a signal. Two ubiquitous patterns can
be discerned: Slow components control parameters of faster ones
(modulation), where the parameter streams are upsampled. (For ex-
ample, the pitch and amplitude parameters of Shepard oscillators
from control rate t−1

2 to audio rate.) Conversely, fast components
report statistical feedback, such as energy balance or peak amplitude
(aggregation), where the statistic streams are downsampled. (No
example in the Shepard Tone.)

By contrast, in a higher-order programming approach, there is
the additional possibility of slow components periodically incarnat-
ing faster ones (configuration), where a function-valued stream is
upsampled to the application rate and its elements switched dynam-
ically. (For example, the Shepard oscillator ensemble at rate t−1

1 .)
We believe that the corresponding freedom of expression is valuable
and natural for many real-world programming problems in the appli-
cation domains of interest, and have made support for higher-order
multi-rate programming a top priority in the development of SIG.

In the remainder of the present paper, we discuss the current state
of design and implementation of the concerned language features,
and illustrate their usage with an executable definition of the Shepard
Tone.

2. Higher-Order Synchronous Data Flow
In SIG, by contrast to many FRP approaches, there is no type-
level distinction between time-less (element) and time-dependent
(stream) values. All variables are uniformly understood as referring
to real-time streams operating at individual but fixed rates. Constant
element values fit the general picture as the corner case of a zero rate
stream, such that the second element is already deferred infinitely,
and only the first element can ever be observed.

This all-streams policy is consistent with simple “clocked hard-
ware” metaphors for SIG semantics, and hence beneficial for intu-
itive program understanding by domain experts. However, it comes
at the price of interfering awkwardly with higher-order functional
programming and in particular nested function expressions. Con-
sider the following higher-order component, which simply exhibits
Currying of a primitive operation:

add = {x -> {y -> x + y}}

For the sake of precision, consider also the equivalent but more
verbose SIG box notation, which names all streams explicitly:

add = [x -> f := [y -> z := x + y]]

The intended semantics, according to the principle of least
surprise, is that add maps a stream of numbers xi to a stream of
unary functions fi = (+ xi); hence fi maps a stream of numbers
yj to a stream of numbers zj = xi + yj . But there is a catch:

Evidently, streams x and f are synchronized, and so are y and z.
But if the dependency of z on x (via supposedly synchronous +) is
not to break the paradigm, then the rates of all four must actually
be identical. This has the paradoxical result that, by transitivity,
f and y must be synchronized, that is, functions are produced
and used exactly as quickly as the elements of their input streams,
which rather defies the purpose of stream-processing functions (one
function, potentially infinitely many inputs and outputs).

This example shows that free variables in nested function expres-
sions in the time-less lambda calculus do not generalize straight-
forwardly to free variables in nested stream-processing component
expressions in time-dependent data-flow programs. Note that the
most elegant existing proposal, given by Uustalu and Vene in terms
of the rather arcane categorial language of symmetric semi-monoidal
comonads [19], does not help: Their approach, “the present value of

a function application is the present value of the function applied to
the history of the argument,” is unsuitable for recursion-free online
and real-time calculation; when it comes to the present, alas, the
history is past and cannot be replayed.

Fortunately, there is a well-established, sufficiently time-aware
functional programming technique that we can employ.

2.1 Staged Meta-Programming
The staged approach to meta-programming [14] is halfway between
two classical language technologies, hygienic macros and closures.
Compared to macro systems, stages emphasize dynamical use and
orthogonal integration with the type system and program reductions.
Compared to closure conversion of nested functions, stages give
greater control over evaluation strategies. See [4] for a detailed
comparison. Their typical applications are the definition of custom
control constructs, as well as in-the-loop programming with partial
evaluation, such as in adaptive algorithms, or (Futamura-style)
compilers [14]. More recent applications, closer to our goals, include
the dynamic configuration of high-performance computations [8].

In general, staging adds up to four operators to the language. We
discuss the general idea using the syntax of METAML [14] for easy
reference, and present the adaptation to SIG in the next subsection.

The suspend operation 〈 〉 defers the evaluation of its argument
expression until the next stage. If e has type t, then 〈e〉 has type 〈t〉.
Free variables of e are fixed to the creation-time environment of
the suspension (cross-stage persistence). The similar lift operation
does evaluate its argument expression at the current stage, and just
suspends the resulting value as a constant. All values of type 〈t〉 are
suspensions of some computations of result type t.

Conversely, the run operation enters the next stage, thus evalu-
ating its argument expression to a suspension, and then the content
of that suspension as well. If e has type 〈t〉, then run e has type t.
The similar splice operation˜escapes from a stage; it is evaluated
at creation time of the surrounding suspension (as opposed to run
which obeys the normal evaluation strategy). The resulting value,
which is also a suspension, is spliced into the parent suspension in
place of the escaped operation. Free variables in ẽ must not be used
in a way that violates stage causality; they may not be evaluated at
an earlier stage than they are bound.

2.2 Staged SIG

Staging can be used to solve the problem of unintentional higher-
order synchronicity, by stipulating the rather plausible axiom that
suspension stops time.

In METAML, suspension is an orthogonal program construct.
For instance, the inner application in λxy. (λz. z)z can be forced
by rewriting the expression to run 〈λxy. (̃(λz. z)〈x〉)〉 [4]. By con-
trast, we deliberately couple suspension and nested function abstrac-
tion in SIG, and hence staged and higher-order programming. In the
examples discussed here, all nested functions are suspended4, and
hence their free variables are cross-stage persistent. The above ax-
iom requires that cross-stage variable references are not understood
as the underlying streams, but as constant snapshots of the current
values at creation time of the suspension.

SIG uses the prefix operators #, $ and %, for suspend, splice
and run, respectively. Since suspension is only applied to function
abstractions, which are not normally evaluated, lift is redundant.
Thus the curried addition example becomes:

add = [x -> f := #[y -> z := x + y]]

Here the inner reference to x is cross-stage persistent and retains
the constant value that the outer stream x had at creation time of
the corresponding suspended function value of f. This gives the

4 Future research on synchronous nested functions notwithstanding.

desired semantics, and removes any spurious necessity to have the
function elements of f synchronize their I/O streams with stream x.
The corresponding user-level expression add(a), for some input
stream a, is a first-class citizen of the language, and can be applied
using either run or splice, depending on the desired evaluation
strategy: A splice operation is evaluated in the context and at the
rate of suspension creation, and the denoted function is applied
persistently to its argument streams in the context of suspension
evaluation. By contrast, a run operation is evaluated in the context
of suspension evaluation, and creates freshly initialized functions at
that rate. Operational differences aside, for the example the two are
denotationally equivalent, because add(a) is stateless.

Each application site instantiates the element components freshly
with non-shared private state, such that referential transparency is
ensured [15].

Staging is reflected in the SIG type system. The preceding
definition, annotated as would be required for a fully explicit SIG
program5, could be given the following types:

add = [x : real -> f : #[real -> real]
where f := #[y : real -> z : real

where z := x + y]]

3. Multi-Rate Components
The semantics of SIG programs is particularly simple if all streams
are operated at a single, known clock rate. The whole program
can be conceived as a monolithic Mealy machine. However, for
many realistic applications, this simple account must be refined.
Currently we consider two directions of generalization to multi-
rate computation, allowing for both distinct and fixed but unknown
rates.6

The first direction of generalization is analogous to the concept
of polymorphic functions: A component definition may be instan-
tiated multiply, and the instances operated at different clock rates.
We propose to call such components polydromic. Since the SIG
execution model understands components as passive routines, to be
invoked periodically at the desired rate by a scheduler, there is no
fundamental technological obstacle to polydromic implementations.
In fact, the rate of components is orthogonal to the type system,
and inferred from the global real-time usage context, which we
refer to as the driver. However, the function of a component may
depend on its clock rate. For example, consider the following variant
on the cumulative sum, namely a properly time-scaled discretized
integrator:

dint = [x -> y := (0 ; y) + x * dt]

The value of the context-dependent constant dt is the inverse of
the rate of its evaluation.7 This value needs to be identified, either
at component runtime by information provided by the scheduler, of
preferrably at component creation time by information provided by
a static rate analysis. Confer the dictionary approach to Haskell type
class polymorphism, where bindings of context-sensitive operations
are passed as arguments, and partially evaluated where possible.

The second direction of generalization has no counterpart in
time-less functional programming. It is concerned with components
whose distinct variables (input, output, state and local) may be
operated at different rates. In the synchronous paradigm, that degree
of freedom is subject to strict constraints.

As a first approximation, all primitive operators, including delay,
are considered fully synchronous. Hence all variables connected

5 Future research on type inference notwithstanding.
6 We leave non-constant rates for possible future research.
7 Put differently, it is specified that csum(dt) yields component life time.

by data flow must be in the same rate equivalence class. But if
a component splits into data-independent subsystems, then these
may well be operated at different rates at the discretion of the local
invocation context.

Disciplined support for a limited form of asynchronous, inter-
rate data flow can be added behind the scenes without break-
ing the paradigm. Special primitive operations upsample and
downsample are added to the higher layer of SIG. Instead of rate
equalities, they introduce either inequations if used qualitatively (for
instance, y := upsample(x) implies that the rate of y is greater
than or equal to the rate of x), or proportions if used quantitatively
(for instance, y := upsample(x, 5) implies that the rate of y
is five times the rate of x). All resampling operations can be thought
of as implemented by communication buffers. It is the responsibility
of the scheduler to resolve read–write conflicts in a well-defined
way. This is appears viable for directed resampling operations such
as the above, but not for completely unspecified rate conversions;
therefore the latter are forbidden in SIG.

Ultimately, a whole program must meet the requirements of
a real-time context that drives the rates of global I/O streams. It
can fail to do so in two distinct ways: Firstly, the actual rates of
global I/O can be inconsistent with the internal constraints incurred
by directed resampling. For instance, if an audio system employs
upsampling from formal control rate to formal audio rate, then
it is illegal to drive it with an actual control rate that is higher
than the actual audio rate. This mode of failure depends on the
program and context only, but not on the cost model of the execution
platform. Secondly, a real-time program can of course also fail
because the required processing rates cannot be met with the
given computational resources. Established methods of worst-case
execution time analysis should be employed to check for this second
mode of failure. We expect that an approach similar to the one
presented in [1] in the context of STREAMIT, but much leaner due
to the simplicity of core SIG, should be viable.

3.1 Multi-Rate SIG

In the SIG programming system, multi-rate components are sup-
ported through the following transformational procedure:

In the first step, a static analysis of rates is performed. It spans
a rate constraint system over a finite set of program locations.
Locations are defined inductively: There is a location for each
program variable. For a location of (suspended) function type, there
is a location for each I/O variable (parameter), of the respective type.
SIG has preliminary support for array data types, which is used also
in the Shepard example. For a location of array type [t], there is a
location of the element type t, the static abstraction of array elements
at arbitrary index. The static approximation via locations implies a
restriction on acceptable programs. Namely it is assumed that all
function values attained by a function-typed variable over time, and
all function elements of an array, operate their respective I/O streams
at identical rates. Examples so far suggest that this is a reasonable
restriction. Rate constraints are assigned to all operations in the
program, either equations for synchronous operations or inequations
or proportionalities for resampling operations, respectively, as
described above.

In the second step, a factorization of locations into rate equiva-
lence classes is performed. Locations connected by synchronization
equations are lumped into a single class. Apart from direct syn-
chronization, spurious rate equivalences can arise from circular
inequations, such as mutual upsampling. These are likely program-
mer mistakes and hence raise a warning. For the whole program, the
rates of all variables should be determined uniquely, via equations
and proportionalities, by the global I/O variables. Internal degrees of
rate freedom leave the behavior of the program in real-time context
underspecified, and hence raise an error. Streams of void type (clock

signals) can be passed explicitly to drive internal rates. Furthermore
it is recorded which rates need to be identified at runtime, via the
dt operation.

In the third and final step, the component is sliced into a
family of subcomponents according to the equivalence classes of
variables, deliberately breaking the resampling data flow [18]: Each
resampling operation is split into a pair of read-only and write-
only variables, respectively, which are connected behind the scenes
as aliases for a shared asynchronous communication buffer. For
example, consider the following amplitude-modulated oscillator:

amo = #[amp -> out where
out := upsample(amp) * sin(phase)
phase := 0 ; phase + velo * dt]

where the angular velocity velo is a cross-stage persistent parame-
ter. The static rate analysis obtains the following constraint system:

R(amp) ≤ R(out) = R(phase)

The finest factorization, which avoids all spurious synchronization,
yields two classes, C1 = {amp} and C2 = {out , phase}. Slicing
results in a pair of subcomponents

amo1 = #[amp -> amp− where
amp− := amp]

and

amo2 = #[amp+ -> out where
out := amp+ * sin(phase)
phase := 0 ; phase + velo * dt]

that communicate the resampled variable amp via a shared buffer,
apparent as a pair of eponymous variables amp±. The implied
“anionic” data flow from amp− to amp+ through the buffer, is
performed behind the scenes.

The scheduling policy prescribed by SIG for the resolution of
read–write conflicts on resampling buffers states that for upsampling,
writes occur before reads, and for downsampling vice versa. That
is, if the ticks of two clocks with different rates coincide, and
the slower one writes to an upsampling buffer, then the change
(modulation) is propagated to the faster reader instantaneously. This
is also necessary for the base case of zero rate streams to function as
constants. Conversely, a slow reader observes not the instantaneous
value (aggregation) produced by a faster writer, but the previous one.
The incurred delay is negligible at the slower rate.

On the whole, this resampling rule allows for a robust non-
circular scheduling strategy to be devised based on the system rates
alone, regardless of actual inter-rate data-flow paths.

There is currently no automatic code generation support for the
scheduler that embeds SIG components into their real-time execution
context. Hence the automatic checking of rate constraint satisfaction
is not yet an issue. However, components do perform inference
of internal rates from the dynamic global rate identification data
provided by the hand-coded scheduler, and detect inconsistencies at
initialization time.

4. Implementation of the Shepard Tone
Figure 4 shows a SIG program for the Shepard Tone. The follow-
ing section is a walkthrough that relates the code fragments to the
preceding descriptions and arguments. Some aspects of the pro-
gram could be formulated differently, using language features in
alternative ways. We have preferred illustration of many different
useful programming patterns over uniformity. Discussion points are
located in the source code by giving line numbers in parentheses.
All variables are named explicitly and uniquely for easy reference.

4.1 Code Structure
On the whole, the program defines a sound generator in a two-
stage process (1, 5, 21–26). The second-stage result shepard_2
is a component with a clock signal input clk_1 that drives the
period t1, and an audio signal output s_out (5, 21). The various
parameters of the Shepard construction are given as first-stage inputs
(2–4). The intended rate of the first stage is zero; it serves only to
configure and initialize the sound generator properly. The other
nested definitions are auxiliary subcomponents (7–20). We shall
discuss them in conceptual bottom-up, textual top-down order.

The subcomponent osci (7–13) is a two-stage definition of
an amplitude- and frequency-modulated oscillator. The first stage
fixes the initial phase init_phase (7). The resulting second stage
osci_2 takes two inputs streams, amp and freq, to linearly mod-
ulate the phase change (10) and wave amplitude (11), respectively.
Note that, by indepent upsampling, the two parameters could vary
at distinct rates if desired. Note also that the initialization of the
private phase state by an input rather than a static constant (10)
is only causally legal because they occur at different stages. The
component produces an audio signal o_out (11), by applying a
spliced incarnation of the cross-stage persistent component value
wave, understood as a periodic normalized function of period 1,
such as sin(2π ·).

The next-level subcomponent voice (14–20) is a two-stage
definition of the intended control over an oscillator throughout
its linear course across the pitch range. The first stage fixes the
initial pitch and rate of change, ascent (14). The resulting second
stage voice_2 takes a clock input clk_2 that drives the pitch-
stepping period t2 (15). Its private pitch state increases according
to the specified ascent (17), annotated using the operator @ to be
synchronous with the (value-less) clock signal. The audio output
is provided by a spliced-in oscillator obtained by osci, which
is escaped twice in correspondence with its two-stage definition,
fixing the initial phase to zero in the process (18). Note that
splicing, rather than running, ensures that the oscillator maintains
its internal phase state as long as the enclosing component lives.
The modulating amplitude is calculated using the pitch-to-amplitude
global parameter function envelope (18), which should give a
shape such as the one depicted in Figure 3. The pitch (logarithmic
relative frequency) is converted to a modulating absolute frequency,
offset by the global parameter base_freq (18).

The ensemble of ocillators is managed by the second stage of
the top level component, shepard_2 (21–26). It takes a clock
input t_1 that drives the life-cycle period t1 (21). Its output is a
polyphonic audio signal s_out, obtained by mixing (summing)
the outputs of the ensemble, a private state variable holding
an array of live oscillators (21, 25). The use of the array as a
function is implicitly vectorized, that is, each component in the array
simultaneously receives the given input, namely the clock signal
clk_1 upsampled by factor res, and the outputs are collected as
an array, to be supplied to the sum operation (25).

The ensemble is annotated to be updated at the clock rate
of clk_1. Its initial value is an array obtained by mapping the
auxiliary function make (implicitly vectorized) over an array of
the integers −r to +r, converting the relative pitches, measured
in units of global parameter ivl, to oscillators (24). The update
at each clock tick shifts the array one element to the right, thus
discarding the topmost oscillator, and adding a fresh one at position
−r (24). The auxiliary function make converts the integral pitch
position k to an autonomous oscillator obtained by voice, scaling
the pitch by ivl and setting the rate of ascent such that the unit
interval takes precisely t1 to traverse (23). Note that make is run
rather than spliced in: fresh incarnations are produced at the rate
of clk_1. This idiom is to emphasize that make is stateless, and
produces identical values for all elements of the constant stream -r.

1 shepard = [
2 wave, envelope : #[real -> real],
3 base_freq, ivl, res : real,
4 r : int
5 -> shepard_2 : #[void -> real]
6 where
7 osci := #[init_phase : real ->
8 osci_2 := #[amp, freq : real -> o_out : real
9 where

10 phase := init_phase ; phase + upsample(freq) * dt
11 o_out := upsample(amp) * $wave(phase)
12]
13]
14 voice := #[init_pitch, ascent : real ->
15 voice_2 := #[clk_2 : void -> v_out : real
16 where
17 pitch @ clk_2 := init_pitch ; pitch + ascent * dt
18 v_out := $($osci(0))($envelope(pitch), base_freq * exp(pitch))
19]
20 }
21 shepard_2 := #[clk_1 : void -> s_out : real
22 where
23 make := #[k : int -> m_out := $voice(k * ivl, ivl / dt(clk_1))]
24 ensemble @ clk_1 := %make(seq(-r, +r)) ; shiftr(%make(-r), ensemble)
25 s_out := sum(ensemble(upsample(clk_1, res)))
26]
27]

Figure 4. SIG implementation of the Shepard Tone.

wave, wave.i1, wave.o1, envelope, envelope.i1, envelope.o1,
base freq , ivl , res , r , shepard2, shepard2.i1, shepard2.o1,
osci , osci .i1, osci .o1, osci .o1.i1, osci .o1.i2, osci .o1.o1,
init phase, osci2, osci2.i1, osci2.i2, osci2.o1, amp, freq ,
o out , phase, voice, voice.i1, voice.i2, voice.o1, voice.o1.i1,
voice.o1.o2, init pitch , ascent , voice2, voice2.i1, voice2.o1,
clk2, v out , pitch , clk1, s out , make, make.i1, make.o1,
make.o1.i1, make.o1.o1, k , m out , m out .i1, m out .o1,
ensemble , ensemble[], ensemble[].i1, ensemble[].o1, s out

Figure 5. Locations for static rate analysis.

R1 : {clk1, ensemble, ensemble[], . . . }

R2 : {clk2, amp, freq , pitch, ensemble[].i1,

envelope.i1, envelope.o1, . . . }

R3 : {phase, o out , v out , s out , ensemble[].o1,

wave.i1,wave.o1, . . . }

R1 ≤ R2 ≤ R3 R1 · res = R2

Figure 6. Results of static rate analysis.

4.2 Rate Analysis
Locations arise inductively as discussed above; see Figure 5 for
a list in order of textual appearance. Basic locations are named
after the variables they represent. Locations induced by a function-
typed location ` are named `.ik or `.ok for the k-th input or output,
respectively. Locations induced for the elements of an array-typed
location ` are named `[].

Constraints follow from data flow and special operations as
discussed above. For instance, line (11) implies that

R(amp) ≤ R(o out) = R(wave.o1)
R(wave.i1) = R(phase)

Line(15) implies that

R(voice.o1) = R(voice2)

R(voice.o1.i1) = R(voice2.i1) = R(clk2)

R(voice.o1.o1) = R(voice2.o1) = R(v out)

Line (25) implies that

R(s out) = R(ensemble[].o1)

R(ensemble[].i1) = R(clk1) · res

The results of the (straightforward but manually laborious)
analysis are summarized in Figure 6. For simplicity, locations
that reduce to others trivially by data flow, such as shepard2.i1
to clk1 by line (21), are omitted from equivalence classes. Locations
that operate at rate zero, if all inputs and output of the global
component shepard are driven at rate zero as discussed, are
omitted. Finally, it is assumed tacitly that the inputs and outputs
of the auxiliary components wave and envelope, which occur as
top-level parameters only, are synchronized. As a consequence, only
three equivalence classes remain, corresponding to rates t−1

1 , t−1
2

and audio rate, respectively. They are displayed together with their
relationships in Figure 6.

Due to rate consistency checking, the second stage will fail to
run if res < 1. Note that this is not an exception to the totality of
SIG, which applies within a stage only. If the rate constraints are
met and the second stage can be run, thenR1 andR3 are fixed by
the context to t−1

1 and audio rate, respectively, andR2 is fixed by
proportionality. No loosely rated internal streams remain.

Of particular note is the occurrence of the location ensemble[]
and its children ensemble[].i1 and ensemble[].o3, in the three
different rate classes; see underlining in Figure 6. These are the

#[clk_2 : void -> amp−, freq− : real
where

pitch @ clk_2
:= init_pitch ; pitch + ascent * dt

amp− := $envelope(pitch)
freq− := base_freq * exp(pitch)

]

Figure 7. Effective ensemble member, slice for rateR2 (control).

#[amp+, freq+ : real -> v_out : real
where

phase := init_phase ; phase + freq+ * dt
v_out := amp+ * $wave(phase)

]

Figure 8. Effective ensemble member, slice for rateR3 (audio).

witnesses for the rates of configuration, modulation and audio signal
generation, respectively, of the Shepard Tone.

For the effect of per-rate program slicing, consider the ele-
ments of the ensemble array, represented jointly by the location
ensemble[]. The components themselves are shifted through at rate
R1 = t−1

1 . Each of them is sliced into a pair of subcomponents with
rates R2 and R3, and dealing with input and output, respectively.
The slices, with the effect of the splicing-in of osci emulated by
source-level inlining, are depicted in Figures 7 and 8, respectively.

5. Conclusion
We have sketched the design, syntax and semantics of SIG, discussed
in detail in earlier publications [15–18]. We have also described
the Shepard Tone as an audio synthesis problem from half a
century ago [13]. It showcases realistic problems in advanced
signal processing system structure that remain challenging for
contemporary programming approaches.

Current work on the design and implementation of SIG is
concerned with features required for the natural expression of
these kinds of structures, namely dynamic program-controlled re-
configuration of the data flow network by higher-order programming,
and synchronous computation at multiple rates.8

Semantic interferences of the two features have been identi-
fied, and solved with a novel idiom of staged meta-programming.
This couples staging and higher-order functions; hence it is less
expressive than stage-anywhere languages such as METAML, but
generalizes safely to multi-rate stream computations.

The meaning of multi-rate components is specified in terms of
rules for robust scheduling and the static analysis of operation rates.
Analysis results are used to detect inconsistencies with the real-time
environment, and for a slicing transformation that reduces multi-rate
code to core SIG, up to implicit inter-rate communication buffers.

The semantics of the new features is given in transformational
form, by reduction to the core language. Denotational semantics
would obviously be helpful to study the theoretical properties of
the solutions. Because of the lack of precedents in the concise
formalization of multi-rate systems, this is a major task that we have
to leave for future work.

5.1 Implementation
We have demonstrated all of the new features at work on a SIG
implementation of the Shepard Tone. Their realization in the SIG
programming system is currently under construction: Compiler

8 Should this be called oligochronous?

support for rate analysis and slicing is incomplete, and requires
some additional hand-coding for fully executable programs. In
particular, the top-level scheduler is not generated, and the results
of rate analysis need to be operationalized manually; we plan
the completion of code generation as a next step, and expect no
major obstacles. By contrast, the runtime system and higher-order
component model are functionally complete, such that current
semi-manually coded multi-rate component implementations have
full binary compatibility with core SIG components generated by
the compiler. Together with hand-coded Java GUI controls, SIG
programs can run interactively in (soft) real time.

As mentioned in section 1, we envision a hierarchy of layers
with increasing expressivity and implementation requirements for
SIG, such that an adequate problem-specific balance can be chosen
for each application program. The core layer features first-order
functions and finite types, and hence has a static memory footprint
and can be translated effectively to hardware; in fact, we are planning
an FPGA backend. The higher-order features demonstrated here
belong to a higher layer that requires more implementation effort.

The current Java implementation has closure-based support [15].
As such, it makes use of dynamic memory management that could
cause problems with real-time constraints. Note that in the Shepard
example, the allocation rate is one closure at R1, on the order of
seconds. We expect that even this naı̈ve approach on a standard
JVM platform will scale well enough for many applications. A more
rigorous approach would be to eliminate higher-order functions
by defunctionalization, as proposed in [16]. Because SIG is non-
recursive, this would allow for static memory immediately, and the
result could be executed on real-time JVMs or translated to more
low-level target platforms.

5.2 More Related Work
In the design of SIG, we have deliberately started from scratch in
order to avoid some of the complexities of existing synchronous
data-flow approaches. As a result, its relationship to established
programming languages and systems is somewhat oblique, and
theoretical groundwork for comparison emerges only gradually.
Nevertheless, we shall give a few further comments that might be
helpful to the reader, even if they point in directions not directly
relevant to the present discussion.

The multi-rate extension of SIG bears a superficial similarity
to the clock calculus [2] of French synchronous languages such
as LUSTRE or LUCID SYNCHRONE. However, there are crucial
differences: “clocks” in their sense are (abstractions of) boolean
streams that filter other streams at “rates” that are quantized over
the base rate, but otherwise arbitrarily irregular and under internal
program control.9 This makes their clock analysis a very different
business than our rate analysis: Clocks in SIG exist in the execution
model only, but they are everyday clocks ticking at regular intervals.

Our approach to extensive support for multi-rate systems is
particularly called for by the audio application domain, but also
for simulations of dynamical systems [11]. By contrast, classical
numerical tools such as SIMULINK and continuous-time variants of
FRP have a notion of adaptive rate. This stems from a numerical
account of calculus problems, where discretizations at different rates
form a family of approximations to the “true” behavior. SIG allows
patterns of discrete data-flow computation, in particular involving
delay by a fixed number of steps as opposed to a fixed interval, that
are generally incompatible with the assumption of a continuous
limit. However, certain ubiquitous situations are exceptions to
the rule; see the dint example. We point to the identification of
the “continuizable” sub-calculus of data-flow computations as an
interesting open problem.

9 We consider this a blatant misnomer: clocks that tick sometimes are broken.

Acknowledgments
Anonymous referees have made a substantial number of useful
suggestions for the improvement of this paper, and the next few.

References
[1] T. Bartenstein and Y. D. Liu. Rate types for stream programs. In

A. P. Black and T. D. Millstein, editors, Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014,
Portland, OR, USA, October 20-24, 2014, pages 213–232. ACM, 2014.

[2] P. Caspi. Clocks in dataflow languages. Theoretical Computer Science,
94:125–140, 1992.

[3] P. Caspi and M. Pouzet. Lucid Synchrone, a functional extension of
Lustre. Technical report, Université Pierre et Marie Curie, Laboratoire
LIP6, 2000.

[4] S. E. Ganz, A. Sabry, and W. Taha. Macros as multi-stage computations:
Type-safe, generative, binding macros in MacroML. In B. C. Pierce,
editor, Proceedings of the Sixth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’01), Firenze (Florence), Italy,
September 3-5, 2001., pages 74–85. ACM, 2001.

[5] G. Giorgidze and H. Nilsson. Switched-on Yampa. In Practical Aspects
of Declarative Languages (PADL 2008), pages 282–298, 2008.

[6] K. Hammond and G. Michaelson. The design of Hume: A high-level
language for the real-time embedded systems domain. In Domain-
Specific Program Generation, volume 3016 of Lecture Notes in Com-
puter Science, pages 127–142. Springer-Verlag, 2003.

[7] P. Hudak. Principles of functional reactive programming. ACM
SIGSOFT Software Engineering Notes, 25(1):59, 2000.

[8] O. Kiselyov, C.-C. Shan, and Y. Kameyama. Bridging the theory of
staged programming languages and the practice of high-performance
computing. Technical Report 2012–4, National Institute of Informatics,
Japan, 2012.

[9] H. Liu, E. Cheng, and P. Hudak. Causal commutative arrows. J. Funct.
Program., pages 467–496, 2011.

[10] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive program-
ming, continued. In Haskell Workshop, pages 51–64. ACM, 2002.

[11] J. Pearce, R. Crosbie, J. Zenor, R. Bednar, D. Word, and N. Hingorani.
Developments and applications of multi-rate simulation. In Computer
Modelling and Simulation, 2009. UKSIM ’09. 11th International
Conference on, pages 129–133, March 2009.

[12] J. Risset. Pitch and rhythm paradoxes: Comments on “auditory paradox
based on fractal waveform” [j. acoust. soc. am. 79, 186–189 (1986)].
The Journal of the Acoustical Society of America, 80(3):961–962, 1986.

[13] R. N. Shepard. Circularity in judgements of relative pitch. Journal of
the Acoustical Society of America, 36(12):2346–2353, 1964.

[14] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

[15] B. Trancón y Widemann and M. Lepper. On-line synchronous total
purely functional data-flow programming on the java virtual machine
with sig. In Proc. International Conference Principles and Practice of
Programming in Java (PPPJ 2015). ACM, 2015. To appear.

[16] B. Trancón y Widemann and M. Lepper. Foundations of total functional
data-flow programming. In Mathematically Structured Functional
Programming (MSFP 2014), volume 153 of Electronic Proceedings in
Theoretical Computer Science, pages 143–167, 2014.

[17] B. Trancón y Widemann and M. Lepper. Sound and soundness –
practical total functional data-flow programming. In Functional Art,
Music, Modeling and Design (FARM 2014), pages 35–36. ACM Digital
Library, 2014. Demo abstract.

[18] B. Trancón y Widemann and M. Lepper. Laminar data flow: On the role
of slicing in functional data-flow programming. In Trends in Functional
Programming (TFP 2015), 2015. Draft proceedings.

[19] T. Uustalu and V. Vene. The essence of dataflow programming. In
K. Yi, editor, Programming Languages and Systems, volume 3780 of
Lecture Notes in Computer Science, pages 2–18. Springer, 2005.

A. Auxiliary Material: Audio File
The supplementary audio file10 is a 60 s rendering of the Shepard
Tone. It has been produced by the SIG implementation as depicted
in Figure 4, and some auxiliary tools.

The program has been “compiled” to Java, the target language
of the SIG compiler. Java coding currently requires some manual
extrapolation from existing code generation schemes and novel
language features, due to compiler incompleteness. But the partially
hand-coded components instantiate the Java runtime environment
for SIG, and are hence fully binary compatible to other, properly
compiled SIG components.

The Java application has been run in offline mode, not driven
by a real-time audio output buffer, but by a non-interactive main
loop, writing raw audio data to a file, which has been converted via
lossless WAV to MP3 format using free tools.11

The first stage of the shepard component has been configured
as follows:

ivl = 1/2 octave res = 1200

base freq = 440Hz r = 8

We have used a normalized sine for the wave function and a
logarithmic fading of 10 dB per ivl for the envelope function.
The resulting second stage has been driven with the following virtual
real-time parameters:

R1 = 1/12Hz =⇒ R2 = 100Hz

R3 = 44.1 kHz

Audio signals have been represented as Java double internally,
and quantized to 16 bit PCM during format conversion.

The Java application, including WAV file generation, has been
executed on a stock Oracle JRE 1.8.0 45 on an Intel Core i5-3317U
CPU at 1.70 GHz. The audio stream has been generated in measured
effective 11% of real time, that is, at nine times the required audio
rate.

10 Also available from:

http://bandm.eu/music/downloads/shepard.mp3

11 javax.sound.sampled to WAV, then sox to MP3.

