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Abstract. Metaprogramming with classical compiler technology is sim-
ilar to model-based code generation. We discuss a particular tool, umod,
that generates complex data model implementations in Java, and a par-
ticular aspect of its support for declarative programming: The rewriting
of data models in object-oriented style, based on the visitor pattern, with
support for arbitrary reference graphs and nested collection-valued fields.
We demonstrate that concerns of both compiler theory and model-based
development apply, and that the distinction is overshadowed by a general
commitment to semantic rigour.

1 Introduction: Compilation, Model-Based Code
Generation, and Metaprogramming

The disciplines of classical compiler construction and model-based code genera-
tion are widely acknowledged, different community viewpoints aside, to address
largely the same basic theoretical problems. One commonly cited characteristic
difference in practice is the role assigned to the resulting code artifacts in the
software development process:

On the one hand, a classical compiler is typically expected to take textual
input code written in some more or less well-established programming language
and legible for the programmer, and produce output binary code legible for some
real or virtual machine, in the successful case without requiring or providing
occasion for user interaction. The compiled program is then expected to run
out of the box, or in the case of modular separate compilation, to integrate
with other compiled modules (in traditional obscurity called “object code”) by
a comparatively simple cross-referencing procedure performed by a linker tool.

On the other hand, model-based code generators, in their pure form, feature
input “languages” or model formats that are not programming languages in the
classical sense, because they are defined by metamodelling rather than grammar,
presented and edited visually rather than textually3, and/or arbitrarily “domain-
specific”, that is specifically created for a small, or even singular, set of projects.

3 Although tools that bridge classical grammar technology and modeling frameworks,
such as Eclipse Xtext, are becoming increasingly popular.
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The output is then expected to be fed into the project repository alongside
hand-written code, and integration often requires nontrivial user intervention:
for instance by completing stubs and skeletons, actual editing of generated code
(frowned upon by software engineering purists, but pragmatically very useful),
or using whatever complex interfacing mechanisms of physically disconnected
code fragments the target language provides (such as inheritance in the object-
oriented world).

In this paper, we present a particular effort in the construction of semanti-
cally sound programming language tools. It demonstrates that the distinction
suggested by the above summary is blurred, and by far secondary to the distinc-
tion of rigorous and ad-hoc approaches. By sharing our experience, we intend
to make a modest contribution to the exchange of ideas and techniques between
the two disciplines, and general understanding of their relationship. To this end,
we shall

1. discuss a subfield of classical compiler construction that predates model-
based approaches (or at least their currently associated buzzwords) but has
many requirements, problems and strategies in common, namely the imple-
mentation of generative or meta-programming;

2. present a case study from our own research on metaprogramming tools and
techniques, which builds on a classical compiler constructors’ viewpoint, but
is related to mainstream model-based methodology closely enough to carry
some illuminating analogies.

We shall start our discussion by refuting more precisely the distinction as
outlined simplistically above, giving two particular arguments to the contrary.

The first concerns the often-cited distinction of model inputs having a distinc-
tively higher level of abstraction than mere programs or being characteristically
“non-executable”. This is difficult to justify precisely:

[Automated programming] always has been a euphemism for program-
ming with a higher-level language than was then available to the pro-
grammer. Research in AP is simply research in the implementation of
higher-level programming languages. [?]

The second, related argument concerns the level of abstraction of the back-
end rather than the front-end. Delegating tedious and banal coding tasks to the
computer has, evidently, always in the history of programming technology been a
major goal. Examples of ad-hoc solutions abound, especially in self-application
contexts (for instance see the GNU compiler collection [?]), but more generic
tools (from LISP hygienic macros to parser generators) have also emerged early.

When such program fragment-generating tools, or metaprograms, are seen
by the programmer as an extension of his own productive capabilities beyond
manually typing code in his target language of choice, the essential distinction
between programs and models, and the accidental one between compiler output
being opaque and model-based generator output being transparent also vanish.

Tools functioning this way can benefit technically and semantically from the
vast body of knowledge of classical compiler construction, but at the same time
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face many of the extra requirements and issues addressed by model-based code
generation. We are confident that the investigation of particular problems and
solutions in this area, such as the example technique discussed in the main part of
this paper, can help to leverage the synergies of the complementary approaches.

1.1 The meta tools Approach

The example metaprogramming technique to be discussed below is part of the
meta tools suite [?,?], an extensive collection of programming tools which, by its
overall design strategy, is placed in the middle ground between classical compilers
and model-based approaches.

The meta tools suite is designed to amplify the productivity of software de-
velopment centered around the core technologies Java and XML, by leveraging
high-level, declarative and semantically rigorous concepts, notations and styles.
Technical implementations are provided through a pragmatic combination of li-
braries and style patterns (where the expressivity of the host platform suffices)
and metaprogramming tools (where it must be transcended). Automatically gen-
erated code is human-readable throughout, and interfaced cleanly using the two
modularity concepts provided by the Java host language: type parameterization
and inheritance.

The meta tools have been validated mainly in self- and cross-application as
well as the construction of other compilers, but also in the rapid prototyping
of other medium-scale applications, in particular with emphasis on nontrivial
algorithms and data structures.

2 The Data Model and Processor Generator umod

2.1 Models

A major component of the meta tools suite is the data model definition language
and implementation generator umod. It provides a concise and expressive nota-
tion for specifying complex graph-like data structures. A umod model is a collec-
tion of model elements, represented as Java objects. The umod compiler generates
Java code for the implementing classes from a model specification. Generated
code comes with sophisticated support for many features: element subtyping,
complex collection-valued attributes, pervasive early detection of spurious null
references, inheritable constructor signatures, combinator-based pretty-printing,
reified getters and setters for point-free programming (à la higher-order func-
tional programming), stable deep equality, pattern matching, etc.

The code generated by umod thus emulates many desirable features of al-
gebraic data types, but comes with the full power of object-oriented program-
ming, in particular unrestricted access to low-level (imperative) programming
constructs if necessary, and the ability to deal with arbitrary data graphs rather
than trees. We have applied umod to generate abstract syntax representations for
several other code generator tools, both classical compilers and other meta tools
components.
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Figure 1 shows a typical example from a real-word compiler construction
project: The umod source text defines a model named Sig, to be translated into
a Java package. The top level model element class Statement is realized as an
abstract superclass of both Assignment and Block, etcetera. Both subclasses
have fields (instance variables) named left, right and stmts, respectively. In
the same text line follows an expression, giving the type of the field, and option-
ally, after the “!” character, a traversal indication (see next section).

MODEL Sig

VISITOR 0 Visitor

VISITOR 0 Rewriter IS REWRITER

// ...

TOPLEVEL CLASS

Statement ABSTRACT

| Assignment

left SEQ Variable ! V 0/0

right Expression ! V 0/1

| Block

stmts SEQ Statement ! V 0/0

Expression ABSTRACT

| Reference

var Variable ! V 0/0

Variable

Statistics

vars Statement -> bool -> SET Variable ! V 0/0 L RR

Fig. 1. Model Definition umod Source (Excerpt)

The syntax of the type declarations and the resulting carrier sets will be
discussed in detail in Section 3.1. For practical programming it is important
that the type constructors be fully compositional, as shown in the last field
definition line of Fig. 1, and are covered by all features listed above.

2.2 Visitors

The umod system also provides code support for, and fine-grained control over,
the visitor style pattern, the standard high-end control abstraction of traversal
strategies for structured data in object-oriented programming [?,?]. The visitor
pattern provides a concise, elegant, safe and robust style of associating data
elements with effects: hence it is a prime example of declarative style (stating
the “what” in user code and delegating the “how” to a lower level such as a
library provider, or in our case, a generator). For data models that represent
programs, the visitor machinery can be seen as the backbone of an interpreter
(even if most actual visitors in a language processing tool will interpret only a
small aspect each.)
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Returning to the example, the annotations following the field types in Fig. 1
at the end of the source line, define traversal plans as a basis for the generation
of visitor code. The slash “/” separates the numeric identifier of a plan and a
number controlling the sequential order when visiting the fields on the same
level of class definition. The second line in the example requests for the source
code of a visitor called “Visitor”, following the traversal plan “0”. (Different
visitors can be derived from one particular traversal plan. The requested flavour
is indicated by a suffix in the declaration, see the next line.) The generated code
is sketched in Fig. 2.

abstract class Visitor { // traversal plan 0/

// ...

void action(final Block b) {

for (final Statement s : block.get_stmts()) // traversal order /0

match(s);

}

void action(final Assignment a) {

match(a.get_left()); // traversal order /0

match(a.get_right()); // traversal order /1

}

}

Fig. 2. Generated Visitor Code (Excerpt)

The generated code realizes the pure traversal, according to the selected
traversal plan. Any desired effects are added by the user, by subclassing and
method overriding. For our example, we consider the task of copy propagation,
a typical basic compiler pass that recognizes assignments which redundantly
copy values, and eliminates them by substitution. The anonymous class in Fig. 3
implements the recognition phase by descending transparently into the depth of a
program model (regardless of the intervening path, for instance via nested Block

elements), processing the model elements of Assignment class, and recording
those that match a suitable pattern.4

The visitor pattern is rooted firmly in the imperative programming paradigm.
That is, its semantics are based on sequential side effects, and rarely investigated
globally and formally. True to the spirit of the meta tools emphasis on semantic
precision, we have addressed the problem, and demonstrated the benefits of a
formal operational model with a nontrivial optimization strategy [?].

2.3 Rewriters

A further issue with visitor is, in their basic form, a strong asymmetry between
declarative input (essentially type-directed node matching, encoded into method

4 Pattern matching of subgraphs is performed by the meta tools component Paisley,
which is tightly integrated with umod. See [?].
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Program copyPropagation(Program prog) {

final Map<Variable, Variable> copies = new HashMap<>();

new Visitor() {

@Override void action(Assignment a) {

// match pattern "Assignment({x}, Reference(y))" against "a"

if (/* success */)

copies.put(x, y);

super.action(a); // top-down traversal

}

}.match(prog);

// ... see below ...

}

Fig. 3. User-Defined Visitor Code

signatures) and imperative reaction (arbitrary method bodies). This resembles
the relation between parser code generated from grammar declarations and in-
terspersed “semantic actions”. As a more declarative way of writing we have
proposed a complementary extension to the visitor pattern that allows for simi-
larly declarative specification of non-destructive data transformation, called the
rewriter pattern [?]. In the language processing scenario, the rewriter machinery
can be seen as the backbone of a compiler pass.

Returning again to the example, the third line in Fig. 1 requests rewriter
code for the same traversal plan. The generated code is much more complex
than in the simple visitor case, because its main purpose is not only to traverse
the model, but also to propagate all changes consistently throughout. Different
flavours are supported, the most sophisticated being the non-destructive type,
combining copy-on-need with aggressive sharing and cycle detection.

Figure 4 shows the generated methods, their call graph, and the possible
intervening overrides by the user. The method rewrite(C2) is the entry point
for the rewriting process for all instances of class C2. It decides by means of a
cache, whether the object has already been successfully rewritten or, otherwise,
whether a clone already exists. The latter case indicates dynamically a cycle
in the model reference graph. Otherwise it creates and memorizes a clone “on
stock”. All these operations employ library methods from the infrastructure.

Then it calls the generated method rewriteFields(C2). This steps through
the fields selected by the traversal plan on class definition level C2, calling
rewrite(F) on each field value recursively. It updates the clone whenever a
different value is returned. In this code, for every field of collection type one or
more program loops are generated, which iterate this process for all values and
create the resulting collection. Additionally rewriteFields() on the superclass
C1 is called, in order to process inherited fields.

On return, rewrite() code checks whether changes in field values have oc-
cured, and returns either the original or the modified clone accordingly. Change
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// API infra−structure

rewrite(C2)
rewrite(F)

(collection loop)

user defined

overrides

rewriteFields(C1)

rewriteFields(C0)

rewriteFields(C2)

Fig. 4. Control flow in generated rewrite code and user override; cf. Fig. 2 and 3. Arrow
styles: thick – generated control flow; thin – auxiliary API calls; dashed – interface to
user code.

propagation is based not on single objects, but on strongly connected components
(SCCs), as recognized by above-mentioned cycle detection.

Again, generated code behaves neutrally; the user defines the required trans-
formation by subclassing and overriding, as indicated in Fig. 4. Both levels of
generated methods can be overridden, and user code may re-use the generated
methods. It also calls the infrastructure library for inquiring and modifying the
state of caches and results. There the most important methods are

– substitute(Object o) – sets o as the result of rewriting the currently vis-
ited model element;

– substitute multi(Object... os) – sets a list (of zero, one or more) model
elements as the rewriting result.

The anonymous class in Fig. 5 uses the information collected by the code in
Fig. 3 to implement the elimination phase of the copy propagation pass.

The rewriter approach to model transformation has many features of high-
level declarative programming, notably: robustness against minor changes in
the model definition, compositional organization of active code into fragments
per model element class, and automated propagation of dynamic changes. But,
in contrast to “pure” approaches such as attribute grammars, the declarative
paradigm is broken deliberately at the level of user-defined code, where the full
powers (and dangers) of the object-oriented host environment are exposed.

This decision, which greatly enlarges the class of expressible rewriting proce-
dures, exposes some technical details. It gives the programmer control over, and
responsibility for,
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Program copyPropagation(Program prog) {

final Map<Variable, Variable> copies = new HashMap<>();

// ... see above ...

return (Program)new Rewriter() {

@Override void rewriteFields(Variable v) {

if (copies.containsKey(v))

substitute(copies.get(v)); // propagate

}

@Override void rewriteFields(Assignment a) {

super.rewriteFields(a) ; // bottom-up rewriting

// match pattern "Assignment({x}, Reference(y))" against "a"

if (/* success */ && x.equals(y)) // now redundant?

substitute_multi() ; // eliminate

}

}.rewrite(prog);

}

Fig. 5. User-Defined Rewriter Code

1. the execution order of rewriting actions in relation to the traversal effected
by generated code (see [?] for a theoretical account);

2. the calling context, which may feature mutable state and stipulate restric-
tions on the type and multiplicity of local rewriting results.

The associated safety conditions can only be expressed partially in the static
semantics of a host language such as Java. Our pragmatic solution maps as much
to the type system as feasible, checks further conditions at runtime for fail-fast
behavior, and leaves more difficult (or undecidable) issues to the user’s caution.

So far, we have validated that rewriter-based programming competes favor-
ably with more heavy-weight model transformation frameworks [?], and de-
scribed very abstract and powerful denotational semantics for “well-behaved”
object-oriented rewriters [?]. The overall goal can be described as allowing all
kinds of user code in principle, but rewarding disciplined use with beneficial
mathematical properties, for a flexible and conscious trade-off between rigor
and agility. The following section explicates this strategy by discussing a novel
problem, namely, how rewriting carries over to collection types.

3 Rewriting in the Presence of Nested Collections

3.1 Model Definitions in umod, Formally

The mathematical notation used in the following is fairly standard. It is inspired
by Z notation [?], as it treats finite maps and sequences as relations with special
properties, and thus allows the free application of set and relation operators and
functions, as listed in Table 1.
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F(A) Finite power set, the type of all finite subsets of the set A.
A→ B The type of the total functions from A to B.
A9 B The type of the partial functions from A to B.
A→X X B The type of the partial and finite functions from A to B.
A↔ B The type of the relations between A and B.
ran a, dom a Range and domain of a function or relation.
S / R = R ∩ (S × ranR), i.e. domain restriction of a relation.
r∼ The inverse of a relation
A∗ All possible finite sequences from elements of A, including

the empty sequence.
IDA = {a ∈ A • (a 7→ a)}, the identity relation.
r # s The composition of two relations: the smallest relation s.t.

a r b ∧ b s c⇒ a (r # s) c

Table 1. Mathematical notation

Table 2 shows the components for defining the structure of a model, as far as
needed for our problem: C0 is a finite set of predefined classes, e.g. imported from
system libraries, and Tprim are some primitive data types. Any model declaration
defines a finite set of classes C, the model element classes, i.e. the classes of the
host language objects which together will make up one instance of the model.
The total superclass function extends must be free of cycles, as usual, and well-
founded in C0. F is the set of all field definitions, each related to one particular
model class definition, indicated by definingClass; the collection of all fields of a
certain class is given by fields.

Each field has a type, given by fieldType. Types are constructed in genera-
tionsas T = Tτ for some arbitrary but fixed number τ . The zeroth generation T0
includes all predefined scalar types Tprim, and non-null references to all external
classes C0 and to all model element classes C. The further generations are made
by applying the following type constructors in a freely compositional5 way:

– OPT Tn, – optional type, the special value null is allowed additionally.
– SET Tn, – power set, contains all possible finite sets of values of Tn.
– SEQ Tn. – sequence, contains all possible finite lists made of values from Tn.
– MAP Tn,1 TO Tn,2, abbreviated as Tn,1 -> Tn,2, – all finite partial mappings

from Tn,1 to Tn,2.
– REL Tn,1TOTn,2, abbreviated as Tn,1 <-> Tn,2, – all finite multi-maps/relations

from Tn,1 to Tn,2.

For every type t ∈ T there is an extension
[[
t
]]
, which contains all permit-

ted values for a field declared with type t. For Tprim and C0 these are inherited
from the host language. For composite umod types the extensions are defined in
Table 2, creating optional types and finite lists, sets, maps and multimaps as
carrier types. The OPT types lead to relaxed getter and setter methods permit-
ting the null value, which is otherwise rejected by throwing an exception. The

5 Except for OPT which is idempotent.
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disjoint(C0, Tprim, C, F,Q)

extends : C → (C ∪ C0)

definingClass : F → C

fields(c) =

{
{} if c ∈ C0
definingClass∼(c) ∪ fields(extends(c)) otherwise

fieldType : F → T

∃τ • T = Tτ
T0 = Tprim ∪ C0 ∪ C

Tn+1 ::= Tn | OPT Tn | SEQ Tn | SET Tn | MAP Tn TO Tn | REL Tn TO Tn
.class : Q→ C

fields(q) = fields(.class(q))[[
t : Tprim

]]
= // inherited from host language.[[

c : C0
]]

= // imported from libraries.[[
OPT t

]]
=
[[
t
]]
∪ {null}[[

SEQ t
]]

=
([[
t
]])∗[[

SET t
]]

= F
[[
t
]][[

MAP t1 TO t2
]]
=
[[
t1
]]
→X X
[[
t2
]][[

REL t1 TO t2
]]
= F

([[
t1
]]
×
[[
t2
]])[[

c : C
]]

= {q ∈ Q | .class(q) = c}

Table 2. Model Element Classes, Fields and Types of a umod Model

other types are realized by specialized instances of the Java collection frame-
work. The generational way of defining T ensures that every value of a type t
is free of cycles.6 It also ensures that all extension sets are disjoint, and we can
assume some global “universe”

[[
T
]]
. This will be used in few formulas for ease

of notation.

Every model is a collection of model elements, i.e. Java objects of model
element classes, i.e. values from

[[
C
]]
. Each of these is identified by a reference or

“pointer value” q ∈ Q, belongs to a certain model class .class(q) and thus has
certain fields fields(q). The state of any model is always equivalent to a finite
map from all fields of live objects to a permitted value for the respective field
type. Field values may directly or indirectly refer to other model elements, and,
in contrast to the well-founded collection-based field value world, the resulting
graph may contain arbitrary cycles.

6 This is necessary to impose any mathematical semantics on Java collection objects,
whose behavior is theoretically undefined, and practically unreliable, in the presence
of cyclic containment.
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3.2 Rewriting Collections

The recursive calls to rewrite(), as explained informally7 in Section 2.3, realize
and define the rewriting process on the level of single elements and their classes.

The declarative approach mandates that this point-wise relation is automat-
ically lifted to the rewriting of values v ∈

[[
t
]]
of a collection type t ∈ Tn>0. Here

a potential clash of paradigms can occur: The programmer must rely on the
consistency of the collections created by the rewriter. For this, precise semantics
are required, based on the mathematical notions of sets, sequences, maps, etc.

The host language Java, just like many others, provides an object-oriented
collection framework with interfaces called Set, Map, etc. But the mathematical
metaphor is well-known to be lopsided: Their actual behavior relies implicitly
on the immutability of contained elements, and explicitly on the order of in-
terfering container mutations, such as add/remove or put, respectively. Hence
the imperative implementation of transformation may be in conflict with the in-
tended mathematics, in particular where control is shared between user-defined
and generated code (solid vs. dashed arrows in Fig. 4). It is desirable that the
implementation of

[[
MAP

]]
should detect and signal error conditions whenever

a conflict arises. Unfortunately, the corresponding tests are potentially very ex-
pensive, and there is no support from the standard libraries.

The following discussion makes two contributions:

1. Precise semantics for the rewriting of freely compositional collections are
constructed by (p1) to (p6) in Table 3. Their implementation is in most
cases straight-forward.

2. Second, for the critical case of rewriting maps inference rules are provided
which can help to elide costly tests, and hence speed up a reliable implemen-
tation significantly.

In a first step we totally forget the structure of the model and the traversal
order: We assume the execution of the whole rewriting process has succeeded
and delivers kv, the user defined point-wise map from model elements to (possi-
bly empty) sequences of model elements as their rewriting results, see Table 3.
Additionally, κ =

⋃
(q,q)∈kv{q} × ran q is a relation which forgets the sequential

order of these lists and flattens them into a multi-map. It is important that κ is
not necessarily a map, nor total. It will be used in the rewriting of all collections
which directly contain model elements, except sequences, which use kv.

The semantics of rewriting collections can now be defined by constructing
mappings, i.e. discrete functions ρn :

[[
Tn
]]
9
[[
Tn
]]
, which follow the generational

structure of types. These mappings are defined as the family of the smallest
relations which satisfy the properties (p0) to (p6) from Table 3.

The “basic trick” is to encode the collection field values and the rewriting
functions themselves both as (special cases of) relations. The extension of the
sequence type

[[
SEQ t

]]
can be encoded as N↔

[[
t
]]
; sets

[[
SET t

]]
are encoded by

{?} ↔
[[
t
]]
, and for

[[
MAP t TO u

]]
⊂
[[
REL t TO u

]]
there is a canonical encoding

7 For a formal definition see the forthcoming technical report.
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kv :
[[
C
]]
→
[[
C
]]
*

κ :
[[
C
]]
↔
[[
C
]]

ρn :
[[
Tn
]]
9
[[
Tn
]]

isMap(r : A↔ B)
def⇐⇒ r∼ # r ⊆ IDB

isInj(r : A↔ B)
def⇐⇒ r # r∼ ⊆ IDA

isTotal(r : A↔ B, s)
def⇐⇒ s ⊆ dom r

s ∈
[[
Tprim

]]
∪
[[
C0
]]
∪ {?} =⇒ (s 7→ s) ∈ ρ0 (p0)

c ∈ C ∧ s ∈
[[
SEQ c

]]
=⇒ (s 7→ flatten(s # kv)) ∈ ρ1 (p1)

t ∈ Tn 6= C ∧ s ∈
[[
SEQ t

]]
=⇒ (s 7→ s # ρn) ∈ ρn+1 (p2)

t ∈ Tn ∧ s ∈
[[
SET t

]]
=⇒ (s 7→ s # (ρn ∪ κ)) ∈ ρn+1 (p3)

t1, t2 ∈ Tn ∧ s ∈
[[
REL t1 TO t2

]]
=⇒ (s 7→ (ρn ∪ κ)∼ # s # (ρn ∪ κ)) ∈ ρn+1 (p4)

s ∈
[[
MAP t1 TO t2

]]
∧ t1 ∈ Tn ∧ t2 ∈ C ∧ isInj((dom s) / (ρn ∪ κ))

∧ isMap((ran s) / κ)

(s 7→ (ρn ∪ κ)∼ # s # κ) ∈ ρn+1

(p5)

s ∈
[[
MAP t1 TO t2

]]
∧ t1, t2 ∈ Tn ∧ t2 6∈ C ∧ isInj((dom s) / (ρn ∪ κ))

(s 7→ (ρn ∪ κ)∼ # s # ρn) ∈ ρn+1

(p6)

S ⊂
[[
Tn
]]
∧ D =

⋃
r∈S dom r ∧ R =

⋃
r∈S ran r

∧ isInj(D / ρn−1) ∧ isInj(R / ρn−1) ∧ isTotal(ρn−1, D ∪R)

isInj(S / ρn)
(pInj)

Table 3. Rewriting Collections

for functions as relations anyhow. This allows the transparent application of the
relational composition operator (#). This does not only lead to compact formulas,
but also induces an intuition which can easily be explained to programmers of
different skills, e.g. using diagrams.

The properties (p0) to (p4) suffice for the construction of ρn, as long the
MAP constructor is not involved. These rewriting functions behave nicely: they
are total, which means that no typing errors can occur. The cardinality of the
user defined rewriting κ (empty, singleton or multiple result) is “automatically
absorbed” by the containing collection. This allows to replace one model element
by zero or more than one in a SET or on both sides of a REL.

A special case is the rewriting of SEQ c for c ∈ C, i.e. rewriting q ∈ Q∗. Here
the sequential order of kv is respected, and the list kv(q) is inserted “flattened”
into the resulting list. This is described by (p1). All other sequences, all sets and
all relations are rewritten by simply composing their encoding relation with the
rewriting relation ρn of their elements’ type generation, see rules (p2) to (p4).

Rewriting MAP t1 TO t2 is the real issue: Consider the map of maps {{a 7→
b} 7→ c, {a 7→ d} 7→ e}, where the user’s local rules specify d to be rewritten
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to b. The global rewriting procedure then faces a dilemma, with the following
options:

– fail dynamically, e.g. by throwing an exception;
– weaken the type of the result from MAP to REL, possibly failing later due to

violated context conditions;
– silently remove both offending pairs;
– silently obey the operational semantics of the underlying object-oriented

implementation, thus creating a race condition where either of the offending
pairs will be overwritten by the other, nondeterministically.

Obviously, the latter two options are unacceptable from a declarative viewpoint,
and the possibility of dynamic failure implied by the two former should be con-
tained as much as possible by means of precise diagnostics and static checks.

A given map m ∈
[[
Tn+1

]]
=
[[
MAP t1 TO t2

]]
is only guaranteed to be rewritten

to a map m′, as opposed to a general relation, if the underlying rewrite relation

of all range elements is itself a map, and at the same time the rewrite relation

of all domain elements is injective. This is illustrated by the diagram

m //

(ranm)/(ρn∪κ)
��

m′
//

((domm)/(ρn∪κ))∼
OO

where the relational converse of the left-hand side must be a map.
The right-hand sides fall in two different cases: t2 ∈ C covered by rule (p5)

and t2 6∈ C by (p6). The data construction “under the line” is in both cases
simple and basically the same as in (p4) for unrestricted relations, but he pre-
conditions above the line are critical. For (p6) it is clear by construction that
every ρn is a map. (For every type only one of (p0) to (p6) matches, and every
rule adds exactly one maplet.) In (p5) mostly it must be checked dynamically
whether (ranm) / κ is a map, because this depends on the outcome of the user’s
code. But it may be known statically: A variant of generated rewriter code which
does not offer the callback function substitute multi(Object...) will produce
only maps for κ, which are even total.

W.r.t. the left-hand side of the diagram, the check for injectivity (which is the
map-ness of the inverse relation) must always be added explicitly, in (p5) and
in (p6). In case of arbitrarily deep nested collection types on the left side of a
map, the equality tests involved can be very expensive. Therefore it is necessary
to inherit and infer the required properties as far as possible.

For injectivity it is clear that the rewriting function of a SET, SEQ, REL and
MAP type is injective, if the rewriting function(s) of its element type(s) is (/are
both) injective and total. Only then it can be guaranteed that different values
of the collection type will be mapped to different values. This is formalized as
(pInj).

For the start of the chain, when the element type is from Tprim or C0, it is
clear that ρ0 is total and injective, since it is the identity.
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For C, i.e. reference values to model elements, map-ness and totality may be
known statically, see remark above, or require explicit testing. Injectivity must
always be tested explicitly. Again, SEQ c with c ∈ C is an exception. In this special
case totality and injectivity of the element level do not carry over to injectivity
of the collection level: e.g., ρ0 = {a 7→ 〈x〉, b 7→ 〈y, z〉, c 7→ 〈x, y〉, d 7→ 〈z〉} leads
to ρ1〈a, b〉 = 〈x, y, z〉 = ρ1〈c, d〉.

For the higher levels, the rewriting function ρn>0 is always total by con-
struction, since (p0) to (p6) cover all types. The only “holes” come from the
additional conditions in (p5) and (p6), which detect the typing errors when
maps would be rewritten to non-maps. We may assume (w.l.o.g.) that in this
case the inference process described here has been aborted anyhow. So the total-
ity of the rewriting function ρ may be assumed and thus injectivity is completely
propagated upward the type generations, as expressed in (pInj). In the optimum
case it needs to be checked only once, for κ, and for

[[
SEQ c

]]
/ ρ1 with c ∈ C.

For given concrete values, if ρn of the components is not injective, then
ρn+1 of the collections, restricted to those currently alive, still can be. Therefore
explicit tests can become necessary also on higher levels, when the values appear
on the left side of a map construction. These tests can be very expensive.

In the current implementation all these inferences cannot be leveraged, since
the employed standard Java collection implementations do the equals() test for
every “key” inserted into a map anyhow. But if an implementation were chosen
with a “trusted back-door”, which allowed to manipulate the underlying data
structures with fewer tests, then these inference rules (which e.g. prove that
there are never “identical” maps of maps of maps on the left side of a map) will
become highly relevant.

Only rewriting algorithms (more or less similar to ours) which treat all val-
ues as immutable, can give precise semantics to a point-wise modification of a
collection, which is referred to by the left side of a map. With these back-doors
this would be possible in acceptable execution time.

If (domm) / ρn is not injective, then still a map may result when rewriting
the map m, namely iff all values which point to the same value by ρn, also have
the same value by m. (E.g. rewrite map {a 7→ 2, b 7→ 2} when the user defines
{a 7→ a, b 7→ a}.) For us is it not yet clear how these “accidentally correct”
results should be handled. This is both an ergonomic and a philosophic design
decision. More practical programming experience is required.

4 Conclusion

Rigorous application of mathematical principles to software design is not just
an academic habit and end by itself; it can have very practical and profound
impact on the reliability of software and the productivity of the development
process. However, rigor comes only easy when a “pure” system can be designed
from scratch. Programming tools and systems that build on legacy environments
can only go so far. A particular danger to rigor lurks in the double standards of
object-orientation with respect to models as transcendental mathematical enti-
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ties and real, mutable data structures. We have illustrated this by a case study
on mathematically sound, dynamic rewriting of complex object models. Where
resorting to a pure “sandbox” system is not an option, programming discipline
must be exercised carefully. This is made feasible by generating as much code as
possible automatically. Using inheritance as the canonical object-oriented tech-
nique to interface generated and user code is a generally useful metaprogram-
ming strategy that leverages both a great deal of logical independence of “moving
parts”, and the opportunity to investigate the remaining interferences systemat-
ically, and provide a pragmatic and effective combination of static and dynamic
safety nets.

4.1 Related Work

Term rewriting has been one of the earliest subjects of basic research and of
practical programming. The foundations have been laid in the early 20th cen-
tury e.g. Church–Rosser theorem, etc. Since then a broad and thorough theory
has evolved. With the upcome of compiler construction in the Nineteen-sixties,
implementations became soon necessary, and a large folklore tradition began,
where term rewriting algorithms were mapped in different ways to concrete pro-
gramming techniques. Our own development is an attempt of systematizing these
well-known programming patterns. Nevertheless, term rewriting in the narrow
and classical sense does of course not touch the two problems treated in this
paper, cycles in the data and freely compositional collection types.

One of the leading implementations and research tools in term rewriting is
Maude. The foundation paper [?] is from 1993 and has hardly lost relevance.

Rho-graphs have been developed for combining pattern matching, as known
from graph rewriting, and lambda calculus. Recently the treatment of cycles and
optimal sharing has been added [?]. We are not aware of any implementation.

A widespread system, well-proven in practice, is Tom [?]. It realizes pattern
matching and term rewriting by compiling a mixture of a dedicated control
language and a high level hosting language, preferably Java. The problems of
cycles and the semantics of maps are not addressed.

All these approaches are different from ours, since they are based on “rewrite-
centered” languages specially designed for these techniques, and therefore can
come to much stronger theoretical results. On the downside the programmer has
to learn a further language and to cope with more or less hidden strategies.

Approaches like the visitor combinators from JJTraveler [?] are different to
ours on the other side of the scale: They are more flexible and ad-hoc configurable
since they involve no code generation at all, but only (slightly invasive) interface
usage. Rewriting and visiting structures with sharing can be implemented on
top, in many cases very elegantly, but is not supported initially. The problem of
maps is not addressed.
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