
Paisley: A Pattern Matching Library for
Arbitrary Object Models

Baltasar Trancón y Widemann1,2 and Markus Lepper2

Baltasar.Trancon@uni-bayreuth.de

1 University of Bayreuth, Germany
2 <semantics/> GmbH

Abstract. Professional development of software dealing with structured
models requires more systematic approach and semantic foundation than
standard practice in general-purpose programming languages affords.
One remedy is to integrate techniques from other programming paradigms,
as neatless as possible and without the need for the programmers to
leave the environment they are used to. Here we present a tool for
the implementation of pattern matching as fundamental means of au-
tomated data extraction from complex and arbitrarily shaped models in
a general-purpose programming language. The interface is simple but,
thanks to elaborate and rigorous design, is also light-weight, portable,
non-invasive, type-safe, modular and extensible. It is compatible with
object-oriented data abstraction and has full support for nondetermin-
ism by backtracking. The tool comes as a library consisting of two levels:
elementary pattern algebra (generic, highly reusable) and pattern bind-
ings for particular data models (specific, fairly reusable, user-definable).
Applications use the library code in a small number of idiomatic ways,
making pattern-matching code declarative in style, easily writeable, read-
able and maintainable. Library and idiom together form a tightly em-
bedded domain-specific language; no extension of the host language is
required. The current implementation is in Java, but assumes only stan-
dard object-oriented features, and can hence be ported to other main-
stream languages.

1 Introduction

Declarative (functional or logical) languages are more or less equally powerful
when creating compound data, and when extracting their components: They
support pattern matching directly in the front-end syntax of function definition.
Object oriented languages mostly offer the very desirable feature of free compo-
sitionality only when creating objects, but totally lack a corresponding idiom for
extraction. Instead, explicit getter methods, type casts, assignments to tempo-
rary variables and explicit case distinction have to be applied in an imperative
way of programming, which is deeply inadequate to the purpose of mere search
and inquiry.

Obviously it is desirable to enrich object oriented programming practice by
techniques from more declarative languages, together with the corresponding

supporting infrastructure. If this is done in a smooth and natural way, it will
make program source texts more easily writeable and better readable and main-
tainable.

There are adequate techniques, like the visitor pattern and the rewriter pat-
tern, which introduce a more declarative style of writing in object oriented data
evaluation. In [7], we have demonstrated how visitor-based extraction can be
optimized using a combination of static and dynamic analyses. However, this
technique corresponds to a more global, “point-less” way of formulating queries
and is too heavy weighted and too loosely defined for the purpose of point-wise
extraction of details, which are known to exist locally.

Instead, we try to port a concept well-proven in very diverse other disciplines
into the object oriented paradigm, namely pattern matching ; The Paisley library
presented herein is a generic programming aid for data extraction by pattern
matching that unifies desirable features of declarative paradigms with an object-
oriented approach to data abstraction. It comes in two parts: a basic library and
a programming idiom that uses the library operations as its core vocabulary.
Problem-specific composite operations can be provided by the user by extending
the library cleanly through subclassing. Our implementation is hosted in Java,
but nothing prevents the same technique to be used in other strongly typed
object-oriented environments such as C++ or .NET.

2 Standards of Pattern Matching

Pattern matching, in the wide sense, plays an important role in many different
kinds of progamming environments. But a close look shows that the techniques
applied in the various fields differ substantially regarding theoretical foundation
and expressiveness, the treatment of nondeterminism, type discipline, etc. These
are the relevant role models, positive or negative, for our approach:

String processing with regular expressions. Here typing is not an issue, since
patterns refer to character strings only. Theoretical foundation is sound; non-
determinism is supported by interspered “dot-star-terms” and must be treated
specially when compiling. Recently sound semantics have been defined even for
backward group references [1]. Focus is oftenly on “processing at line rate”,
meaning real-time filtering of high frequent network traffic. In this field compi-
lation to specially designed automata is the technique of choice. This is a field
esp. not covered by our approach.

Functional programming with algebraic datatypes. Inverse constructors are
a central means of data extraction and equational function definition in func-
tional programming languages (Hope, Haskell, ML, Opal), and shares the full
type discipline of the language. Nondeterminism arises not within one pattern,
but rather between overlapping patterns of equations, and is usually resolved
implicitly by a first-fit rule. In the context of the multi-paradigm language Scala
pattern matching has moved closer to object oriented programming, esp. by the
construct of “case classes”, see [5].

XML processing with XPath and XSLT. XPath pattern definition has become
practically relevant as a central part of the XSL transformation system. There is
no commonly agreed theory for the full scope of the pattern language, but for re-
stricted subsets [2]. Nondeterminism is supported by the “for-each” statement
of the XSLT language, although control is limited to complete enumeration.

Logic programming with goals & unification. Logic programming languages
(most famous: Prolog) offer a distinct quality by making nondeterminism, uni-
fication of variables and values, and automated exploration of solution spaces
first-class constructs of the language. They are usually weakly typed, but theo-
retically well explored.

Model query and transformation. In dedicated model query languages pat-
tern matching is a central functionality as well: the evaluation of a query de-
livers a subset of model nodes. Selection criteria range from simple checks on
attribute values to complex relational constraints among nodes. In graph trans-
formation systems, graph patterns feature prominently as the left hand sides of
rewrite rules. The pervasive nondeterminism in graphs is often handled by ex-
plicit control flow. See for instance the “Rule Application Control Language” of
GrGen.NET [3]. Pattern notations take a vast number of theoretically and prag-
matically different forms in the multitude of existing systems. For instance, the
query language of GrGen, GReQL [4], offers regular path expressions to express
complex patterns.

3 Design of Paisley Pattern Matching

3.1 Requirements. Static Typing

Porting pattern matching to an object oriented environment is not trivial. On
one hand, there are semantic problems to be solved, on the other hand there
is a multitude of theoretically possible implementation techniques. The above-
mentioned work from the Scala context gives a good survey on different strate-
gies, even with experimental evaluation [5]. At the end of this article we will
apply their criteria to our solution.

Our approach is distinguished by a carefully selected canon of rigorous design
requirements. The main focus is on strict typing. This is maintained by type
relations of different kinds, which are mapped to the host languages type system,
thus always guaranteed:

1. Pattern and data The type of data which can be matched against a given
pattern is described by a type argument to the patterns’ type.

2. Pattern on components vs. pattern on collection The type of any function
which lifts a pattern on an object’s field to a pattern on the object as a
whole, or from a member object to a collection, etc., is always a function
type between the corresponding pattern types.

3. Pattern combinators respect data types. The pattern combinators from the
Paisley library require compatible types of the patterns’ targets.

4. Pattern variables limit the type of their possible results. On the construction
side, a pattern variable has a type attributed with the type it can match, as
any other pattern. After successful match, on the binding side, the variable
offers the bound datum by a fully typed getter interface.

In detail, our requirements are . . .

1. Declarative, readable, writeable, customizable. Patterns express the program-
mer’s intention of data extraction with as little formal noise as possible.
This is the main target of all our efforts: Making program code more self-
documenting and better maintainable, compared to the genuine imperative
programming.

2. Full reification: no parsing/compilation overhead at runtime. Patterns are
typed host-language objects; ill-defined usage is detected at compile time.

A counter example is the interface of the “javal.util.regex” package:
Regular expressions must be defined as textual strings, which are analyzed
and compiled at run-time. This kind of design flaw is, what our design prop-
erty forbids: The adequate interface would have been a collection of typed
constructors/factory methods, the use of which cannot fail at run-time. (Such
a string encoded interface can always be provided additionally, for all those
programmers who never make any mistake when counting backslash-escaped
escape-sequences of back-slash escaped back-slashes !-)

3. Statically type-safe variables. No need to down-cast variable bindings.

4. Statically type-safe patterns. Detect ill-typed pattern matching attempts as
often as possible.

5. No language extension: independent of host compiler/interpreter. Solution
can be used with off-the-shelf programming platforms.

6. No assumptions on host language beyond standard OOP. Solution can be
re-implemented in any standard object oriented programming language.

7. No adaptation of model datatypes required. Data models can be developed
without pattern matching in mind; no source access required. This is demon-
strated in the example in section 4.1, where a third party data type from
a binary library, with an exceptionally ugly interface, is niecely abstracted
into our framework.

8. Support for multiple views per type. This even sharpens the preceding re-
quirement: Different collections of pattern definitions can expose different
structural aspects of data models.

9. Support for continuation-style nondeterminism. Patterns are normal objects
with some inner state, which locally and completely memorizes the current
backtracking situtation. The call for successive matches should be postpon-
able indefinitely, even across serialization and de-serialization of all objects
involved.

10. Nondeterminism incurs no significant cost unless actually used. This implies
no central storage or control mechanism, and lazy exploration of alternatives.

3.2 Basic Implementation Technique: DSL by Library / API

Pattern matching directives can be seen as a domain specific language / DSL,
we want to integrate into a general purpose programming language, here: Java.
For this there exist some well-known basic philosphies:

The requirements (2) to (4), for static type safety and reification rule out
mere textual encodings, as critized above. On the other hand, the requirement (5)
for compiler independence rule out implicit compile-time generation of pattern
matching code.

As possible solution remains a generative approach, where DSL front-end
syntax is translated into source code, in a dedicated pre-processing step. This
approach is used by many others of the authors’ tools, e.g. umod.

Here we prefer an API and library based implementation: patterns are con-
structed at run-time, in terms of host language objects, which do carry certain
semantics. We prefer this approach because it is more lightweight and flexible.
(Of course, whenever appropriate, complex fragments of code atop of this li-
brary can still be generated from a more concise domain-specific notation, as for
instance done by our umod tool [7]).

3.3 An Imperative View to Pattern Matching

The classical semantics of patterns as the inverse of constructor terms of alge-
braic datatypes, de-facto standard in declarative languages, does not carry over
smoothly to the object-oriented paradigm, because object constructors gener-
ally lack the mathematical benevolent properties of their algebraic counterparts,
namely extensional equality, injectivity, disjointness and completeness. A looser
notion of pattern matching, more appropriate to the abstraction style of object
orientation, is to consider it the reification and composition of certain classes of
data-extraction operations, namely

1. testing, classifying objects as either acceptable or not,
2. projection, descending into the structure of the sub-objects,
3. binding, assigning data to variables.

The design of our library is such that these three concerns are separated as much
as possible, but can be composed as freely as possible.

3.4 The Pattern interface

(For more details of the subjects of this and the following sections, please also re-
fer to the online-api-doc in [10, eu/bandm/tools/paisley/package-summary.html].)

The main interface of the library is the abstract base class Pattern<A>
of patterns that can process objects of type A. A pattern Pattern<A> p is
applied to some data (? extends A)x by calling p.match(x). This returns
a Boolean value indicating the success of the match.

abstract class Pattern<A> {
public abstract boolean match(A target);
public boolean matchAgain();

public Pattern<Object> forInstancesOf(Class<? extends A> cls);
public static <A> Pattern<A> eq(A constant);
public static <A> Pattern<A> equal(A constant);

public static <A> Pattern<A>
both(Pattern<? super A> first, Pattern<? super A> second);

public static <A> Pattern<A>
either(Pattern<? super A> first, Pattern<? super A> second);

}

abstract class Transform<A, B> extends Pattern<A> {
protected final Pattern<? super B> body;
protected abstract B apply(A target);
protected abstract boolean isApplicable(A target);

}

class Variable<A> extends Pattern<A> {
public A getValue();
public List<A> eagerBindings(Pattern<? super B> root, B target);
public Iterable<A> lazyBindings(Pattern<? super B> root, B target);

}

Fig. 1. Interface synopsis (Core)

In case the result is true, all variables in the pattern will be bound, iff they
occur in a branch of a disjunction which contributed to the match. In case the
result is false, no variable does have any guaranteed meaning.

In case the result is true, the parameterless method p.matchAgain() can
be called. This is how nondeterminism is realized, how the fact is signalled that
a certain pattern matches a certain datum in more than one way.

The call of matchAgain() causes a new match attempt of the same datum.
The result is again a Boolean, reflecting a match result which is guaranteed to be
different from any previous result. Meaning and possible reaction are the same
as with the first match, so matchAgain() can be called as long as its result is
true.

The default implementation of matchAgain always returns false, speci-
fying a deterministic pattern.

Iteration over all matches of a nondeterministic pattern is effected simply by
a do . . . while loop, with minimal redundancy.

if (p.match(x)) do
doSomething();

while (p.matchAgain());

3.5 Re-usage and re-entrance

Any pattern can be re-used with the same or some different datum, but not in
parallel.

3.6 Predefined Tests and Combinators

The Paisley library offers factory methods for patterns which wrap diverse tests,
and for combining patterns.

Basic rule for the whole implementation is strict typing, as postulated above
in section 3.1. In this context it is of utmost importance that most Patterns are
contravariant : A pattern capable of matching any superclass of A is a sub-type
of Pattern<A>, in the meaning that it may be substituted for a such.

In most places the type of a pattern required e.g. as a certain function argu-
ment is only specified modulo this contravariancy. This can (and must) be ex-
pressed in Java by wildcards with lower bounds, of the form Pattern<? super A>.

In the current implementation there are the classes ReflectionPatterns,
lifting some genuine java.lang.reflectmethods, StringPatterns, which
lift not only the standard string predicates like String.startsWith(), but
also the main method of the java.util.regex package. PrimitivePatterns
realizes some more tests on numbers and Booleans.

CollectionPatterns construct patterns on collection types from patterns
on the elements contained therein. For this, several variants are possible. E.g.
anyElement(Pattern) tries all contained elements for match(), and after-
wards for matchAgain(), while get(int,Pattern) tries to match only the
one element at the given position.

(Please note: for technical reasons the distinction between java.lang.Iterable
and array types cannot be resolved by overloading, but has been mangled into
the naming, using “Array” as a name component.)

The class Pattern itself offers . . .

– any(), delivers a pattern that always matches,
– none(), delivers a pattern that never matches,
– Pattern.and(Pattern), conjunction of two patterns,
– Pattern.or(Pattern), disjunction of two patterns,
– the static combinators both(...), either(...), all(...), some(...),

allowing to combine more than two patterns conjunctively or disjunctively.
– the local function p.noMatch(), deriving a pattern which matches iff p

does not match,
– and p.uniquely(), deriving a pattern which matches iff p does match

and matchAgain() fails.
– Pattern<A>.compareTo(A, Pattern<int>), deriving a pattern which

first executes the A.compare(A)method, and then applies the Pattern<int>
to its result.

The EnumBranch and the IntBranch classes also implement a disjunc-
tion, but additionally offer a getKey() method which after each successful

(re-)match tells the user which of the branches has been taken. In many situa-
tions this allows to combine case distinctions with expensive analysis common
for all cases.

3.7 Specialized Pattern Libraries

The current implementation of Paisley comes with some more specialized sub-
classes of Pattern. E.g., the class XMLPatterns offers content extraction and
navigation on all axes of a “document object model” as defined by the W3C
XML DOM definition [6]. It will be used in the example in section 4.2 below.

For other, user-defined tasks the implementation strategy will be similar:
Encapsulating all the dirty details of testing, iterating, backtracking and cutting
into such library patterns, thus creating a clean level on which the operational
code can be formulated in a declarative way.

3.8 Projection and search

Given a total function f which maps all objects of class A to one of class B.
Typical example: a getter function which reads a certain field of type B from an
object of class A.

Then Pattern.transform(f) yields a pattern of type Pattern<A>:
Given a pattern p which tries to match field values, the pattern p.transform(f)
will match the containing objects.

The more general case is that of partial functions. These must be realized by a
sub-class T of Transform<A,B>, which defines the boolean isApplicable(A)
and B apply(A) methods explicitly.

Every instantiation of such a transform class new T(Pattern) will
act as a pattern on A, simply by applying the transformation and subsequent
matching.

3.9 Variables

A variable is simply a pattern of subclass Variable<A> that matches always,
and binds to the matched object for later retrieval via the getValue method.

The variable interface is unique in the sense that its type parameter occurs
in a return type, so it does not behave in a contravariant way, as most other
pattern factories do, see section 3.6 above.

Binding occurs as a side effect which is meaningful only for successful matches;
unsuccessful matches leave the corresponding variables is unspecified state. For
reasons of simplicity and efficiency, our library does not provide automatic means
to detect whether a variable has been bound. When a variable shall be read
which does not appear in every branch of a disjunction, the class EnumBranch
or IntBranch can be employed to distinguish the cases.

The basic idiom of pattern matching is thus:

Variable<C> vc = new Variable<C>();
Variable<D> vd = new Variable<D>();
Pattern<A> p = myPattern(vc, vd);// known to bind vc AND vd
if (p.match(x))
doSomething(vc.getValue(), vd.getValue());

It is not an accident that the pattern variables c and d in this example have local
declarations with precise static type (first two lines): This style enables the full
use of static type information for bound values, even if the matching pattern has
been constructed from generic building blocks that are defined independently of
the type of occurring variables.

Figure 2 shows how variables are used in a Paisley compound pattern:

– References to variables must be memorized explicitly, they are not adressable
via the containing pattern.

– Therefore they must be constructed first, the reference to them must be
memorized, and then they can be built into a newly constructed pattern.

– Variables are simple “storages” for values, they do not provide the unifcation
functionality of “logical variables”.

– Therefore, in most cases a certain variable appears only once(1) in a certain
pattern.

– After a successful match, variables may be bound to sub-structures of the
matched datum.

– Whether a certain variable is bound or not may depend on the chosen alter-
native of a disjunction. The user is fully responsible for reading only bound
variables.

– There is neither an automated initialization nor a re-initialization when call-
ing match() or matchAgain(). Consequently, the contents of a variable
are not suited to decide which branch of an alternative has been taken.

The very restricted role of variables should not be a problem from the pro-
grammers point of view, because it corresponds to the rather primitive interface
of object oriented “instance fields”.

For patterns with a single variable, bindings for all matches can be collected
either eagerly or lazily with eagerBindings and lazyBindings, respectively,
thus effecting fully reified encapsulated search as strongly typed objects of the
Java collection framework. The iteration pattern for all matches simplifies ac-
cordingly.

for (C c : vc.lazyBindings(p, x))
doSomething(c) ;

The alternative is to calculate all possible matches before any processing, i.e.
eagerly. This works of course only if the number of possible matches is finite:

List<A> list = vc.eagerBindings(p, x);

In the current implementation, these both features cannot be abstracted to
more than one variable, only because Java lacks the possibility to define ad hoc
typed n-tuple.

?

final A x = ...
Variable<C> vc

= Pattern.<C>variable();
Variable<D> vd

= Pattern.<D>variable();
Pattern<A> p

= Pattern.either(...
...(vc) ...
...(vd) ...);

if (p.match(x)){...
// maybe vc OR vd
// is now meaningful

}

Fig. 2. Explicit references to data, variables and pattern are required.

3.10 Parametrizing Patterns with Sub-Patterns. Star and Plus
Closures

Furthermore, variables are the basis for two fundamental generic transformations
of patterns:

First, in the code fragment

Variable<V> v = Pattern.<V>variable();
Pattern<R> topPattern = ... (v) ... ;
Pattern<V> subPattern = ... ;
Pattern<R> newTopPattern = v.bind(topPattern, subPattern);

newTopPattern will be a pattern in which every occurence of v is replaced
by the subPattern. Thus variables are the central means for paremeterizing
patterns.

As a consequence, they serve as the bridge-head of “star” or “plus” Kleene
closures:

Variable<V> v = Pattern.<V>variable();
Pattern<V> once = ... (v) ... ;
Pattern<V> multi = v.plus(once);

The newly constructed top-level pattern multi is the “Plus” closure of the
pattern once, insofar as every occurence of the variable v leads to a binding for
this variable, but, as a nondeterministic alternative when calling matchAgain(),
also leads to a new instantiation of the pattern, starting at this very point. The
operator v.star() behaves accordingly.

3.11 Reflection on Patterns

The API of Pattern comes with a small number of reflection methods: isDeterministic()
yields whether the pattern may match at most once. Two variants of preserves()
report whether a given variable is not assigned during match execution.

3.12 Breaking the paradigm

While introducing declarative style of writing and thinking, the code “behind
the scene” remains imperative, i.e. is executed in a certain fixed sequential order.
Whether any knowledge of this order is considered part of its semantics, is a fun-
damental decision on the level of “coding style guidelines”, and its consequences
must be considered carefully. Here clearly a Rubicon would be crossed.

When using the information of sequential execution order you can realize
powerful functionalities. E.g., the example in section 4.3 shows, how the be-
haviour of logical variables can be mimicked. But then you loose the declarative
nature of the DSL, you loose the independence of the concrete form of the pat-
terns beyond their matching semantics.

It must be clear to the user that these both ways of employing our tools
substantially differ.

4 Examples

The following examples (source text and ready-to-run .jar files) can be retrieved
from http://bandm.eu/metatools/paisley The examples can easily be
executed following the instructions on this website.

Please refer also to the API DOC at http://bandm.eu/metatools/
docs/api/index.html, [10].

4.1 Matching Fools Days

The Java runtime library comes with a package which models calendaric date. Its
central classes, GregorianCalendar, Calendar, etc., have a rather awkward
interface: properties must be identified by predefined integer constants and can
only be handled by calling a single getter/setter method. Additionally there is a
complex behaviour of inner state, and the the first step every developer will do
when condamned to use these classes is to define a sensible façade!

The listing in figure 3 shows different user-defined subclasses of our Pattern
class, which match any calendaric date which (a) belongs to a First of April, and
(b) the year of which matches a further pattern.

foolsDay1 does so by testing all relevant properties directly in the body of
the match() method, using the host langugage logical “and”.

foolsDay2 uses the conjunctive pattern combinator instead. The get()
method is a typical projection in the sense of section 3.8: It delivers a pattern
for a Calender by lifting a pattern for the indicated component.

foolsDay3 uses one more intermediate level: The projection functions for
certain properties are reified, and the top-level pattern gets even more readable.

The test function initTestdata() fills an array with pseudo-random cal-
endaric data.

Then

anyArrayElement(foolsDay(any())).match(x));

answers the question whether any of the dates matches a fools day, while

anyArrayElement(foolsDay(eq(1984))).match(x));

says whether the fools day of the year 1984 is contained in the data.
The following code iterates over all matches and prints them to stdout:

final Variable<Integer> year = new Variable<Integer>();
final Pattern<Calendar[]> p = anyArrayElement(foolsDay(year));
if (p.match(x)) do

System.out.print(year.getValue() + " ");
while (p.matchAgain());

Please note that the “year” argument to the fools day pattern is itself a
pattern, not a simple integer. This pattern can in turn be arbitrarily complicated.
E.g., the following retrieval delivers all fools days from the test data which fall
into even-numbered years:

final Variable<Integer> year = new Variable<Integer>();
final Pattern<Integer> even
= new Atomic<Integer>(){

public boolean match(Integer i){
return (i%2)==0;

}};

final Pattern<Calendar[]> p2
= anyArrayElement(foolsDay(year.and(even)));

System.out.println("even years: " + year.eagerBindings(p2, x));

4.2 Matching XHTML Data

In this example we analyze the XHTML document from
http://www.w3.org/TR/2002/REC-xhtml1-20020801. This document is
itself (self-application !-) an XHTML document. As such it contains a very ugly
construction, called “definition list”. This is an element with tag dl containing
an alternating sequence of “definition terms” and “definition definitions”, stand-
ing for the components of a glossary, namely terms and a their explanation.
The ugly fact is that the relation between both is only by position, and is not
reified/tagged.

Paisley comes with a library eu.bandm.tools.paisley.XMLPatterns,
which deals with XML Document Object Models, as defined bie W3c [6]. This
library contains patterns to filter for elements, attributes, attribute contents,
and to follow all axes defined in the standard, see the declarations in figure 4.

Figure 5 shows the routines needed to identify the dt/dd pairs.

Assumed that doc contains the document object of the above-mentioned
XHTML specification document, in any implementation adhering to the Java
anguage binding of W3C XML DOM. Then the following code can be applied:

import org.w3c.dom.Element ;
import org.w3c.dom.Document ;
import eu.bandm.tools.paisley.* ;
import static eu.bandm.tools.paisley.XMLPatterns.* ;

//...

final Variable<Element> dt = new Variable<Element>();
final Variable<String> href = new Variable<String>();
final Pattern<Document> p =
root(descendantOrSelf(

defPair(dt, descendant(
anchorHRef(all(href,

localURL(false)
)))

)));
if (p.match(doc)) do {
System.out.println(String.format("%s refers to %s",

dt.getValue().getTextContent(),
href.getValue()));

} while (p.matchAgain());
//..

The printout shows every external link appearing in the text of a dd entry,
preceded by the dt term that text is related to, see figure 6.

Please note the different levels of non-determinism, unrolled “behind the
scene”: All immediately adjacent pairs dt/dd are found, at arbitrary deep nest-
ing level in the document, and in each such dd contents all a-elements are found
with a non-local URI.

4.3 Mimicking logical variables

As mentioned above in section 3.12, it is possible (but not always advisable !-) to
take into account the sequential order of evaluation to achieve powerfuls effects,
as in the following code:

final Variable<Element> dt = new Variable<Element>();
final Variable<String> href = new Variable<String>();
final Pattern<String> containsKeyword = new Atomic<String>(){
public boolean match(String x) {
return textContainsDefTerm(x, dt.getValue().getTextContent());

}
};
final Pattern<Document> p =
root(descendantOrSelf(

defPair(dt, descendant(
anchorHRef(all(href,

localURL(false),
containsKeyword
)))

)));
// etc.

In this version the pattern “containsKeyword” refers to the variable dt
and thus to the <dt> element which has been matched by that variable in
the same match attempt as the pattern is called. This corresponds to the cur-
rent “terminus under explanation”, the explanation text of which contains the
matched <a>. Consequently, in contrast to the first example, here only those
URIs will be matched which themselves do contain the keyword verbatim, mod-
ulo case. Now only those lines from figure 6 appear which are marked with ⋆.

So this technique of cross-refering to already bound pattern variables can
realize a behaviour like “unification”, as known from true “logic variables”.

5 Conclusion

5.1 Related Work

A theoretically elegant design of pattern matching capabilities for Java, JMatch,
is presented in [8]. While it has had much impact, and is cited heavily by later
work, there are severe drawbacks: The approach assumes a perspective on pat-
tern matching that is very much like logical programming. As a result, their
nondeterminism is rather heavy-weight, requiring CPS transformation of certain
program parts. Furthermore, the solution is a host language extension and re-
quires a special academic compiler. All such experiments are eventually doomed
to oblivion unless some big vendor adopts the technology.

As mentioned above, the multi-paradigm language Scala [9] incorporates a
powerful pattern matching idiom with clean semantics and user-defined extensi-
bility, via singleton objects and the unapply method [5]. Being part of the core
Scala design, it is better integrated with the host language than our approach
can ever hope to be. On the other hand, we find the lack of nondeterminism and
of the “star-closure” significant weaknesses.

5.2 Applying the Evaluation Criteria of Emir, Odersky and
Williams

The paper on Scala of these authors [5] presents an evaluation grid of nine crite-
ria. Letting out the last three (which deal with concrete performance measuring
and cannot easily be reconstructed) we come the result that Paisley corresponds
to the “extractor” solution presented in this paper, with some significant differ-
ences:

Conciseness of the framework Overhead is required for the Paisleys projec-
tion operations, see section 3.8 above. They correspond to the “extractors” in
Scala, and are a little more verbose than those, caused by the host language’s

syntax. Furthermore, the chain of delegation to embedded patterns must always
be written down explicitly, while in many situations a call to “unapply()” will
silently be inserted in the Scala approach.

But many of these projections are pre-defined in the more special libraries of
Paisley, most of them parametric, and ready-to-reuse by the programmer.

Conciseness of shallow matches. Conciseness of deep matches
The syntax of a concrete application of a complex Paisley pattern has least
possible snytactic noise.

But some noise is indeed generated by the fact that the “right hand side” is
not simply written in-line, but has to be coded explicitly, after the match has
succeeded, maybe involving explicit unpacking of bound variables.

Maintainability: representation independence
No internal representation at all must be revealed, because only the functional
interfaces must be implemented. (Nevertheless, in most cases the extractors will
follow the internal structure “voluntarily”.)

Maintainability: extending (data) variants. Maintainability: extending pat-
terns
The data and the pattern world may grow arbitrarily without affecting the be-
haviour of older class definitions and patterns. Since patterns are only defined
by their functional interface, arbitrary new variants can be added, and existing
combinations can freely be abstracted at any time.

This goes far further than the Scala “extractors”: Since being transparent to
non-determinisum, also arbitrary disjunctions and even encapsulated search can
be abstracted to one single pattern component.

References

1. Becchi, M., Crowley, P.: Extending finite automata to efficiently match perl-
compatible regular expressions. In: Proceedings of the 2008 ACM CoNEXT Con-
ference. pp. 25:1–25:12. CoNEXT ’08, ACM, New York, NY, USA (2008), http:
//doi.acm.org/10.1145/1544012.1544037

2. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs.
J. ACM 55(2), 1–79 (2008)

3. Blomer, J., Geiß, R., Jakumeit, E.: The GrGen.NET User Manual (2011), http:
//www.grgen.net

4. Ebert, J., Bildhauer, D.: Reverse engineering using graph queries. In: Schürr, A.,
Lewerentz, C., Engels, G., Schäfer, W., Westfechtel, B. (eds.) Graph Transforma-
tions and Model Driven Engineering, vol. 5765. Springer Verlag (2010)

5. Emir, B., Odersky, M., Williams, J.: Matching objects with patterns 4609 (2007)
6. Hors, A.L., Hégaret, P.L., Wood, L., Nicol, G., Robie, J.,

Champion, M., Byrne, S.: Document Object Model (DOM)
Level 2 Core Specification Version 1.0. W3C Recommendation,
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/

7. Lepper, M., Trancón y Widemann, B.: Optimization of visitor performance by
reflection-based analysis. In: Cabot, J., Visser, E. (eds.) Theory and Practice of
Model Transformations. Lecture Notes in Computer Science, vol. 6707. Springer
(2011)

8. Liu, J., Myers, A.C.: JMatch: Iterable abstract pattern matching for Java. In:
Practical Aspects of Declarative Languages. Lecture Notes in Computer Science,
vol. 2562. Springer (2003)

9. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. artima, 2 edn. (2010)
10. Trancón y Widemann, B., Lepper, M.: The BandM Meta-Tools JAVA API Doc.

http://bandm.eu/metatools/docs/api/index.html (2010)
11. Trancón y Widemann, B., Lepper, M.: Paisley: Pattern matching à la carte. LNCS,

vol. 7307. Springer (2012)

static Pattern<Calendar> foolsDay1(Pattern<? super Integer> year) {
return new Unary<Integer, Calendar>(year) {
public boolean match(Calendar c) {

return c.get(Calendar.MONTH) == Calendar.APRIL
&& c.get(Calendar.DAY_OF_MONTH) == 1
&& getBody().match(c.get(Calendar.YEAR));

}
};

}

// --

static Pattern<Calendar> get(final int field,
Pattern<? super Integer> value) {

return new Transform<Calendar, Integer>(value) {
public Integer apply(Calendar c) {

return c.get(field);
}

};
}

static Pattern<Calendar> foolsDay2(Pattern<? super Integer> year) {
return all(get(Calendar.MONTH, eq(Calendar.APRIL)),

get(Calendar.DAY_OF_MONTH, eq(1)),
get(Calendar.YEAR, year));

}

// --

static Pattern<Calendar> day(Pattern<? super Integer> day) {
return get(Calendar.DAY_OF_MONTH, day);

}

static Pattern<Calendar> month(Pattern<? super Integer> month) {
return get(Calendar.MONTH, month);

}

static Pattern<Calendar> year(Pattern<? super Integer> year) {
return get(Calendar.YEAR, year);

}

static Pattern<Calendar> foolsDay3(Pattern<? super Integer> year) {
return all(month(eq(Calendar.APRIL)),

day (eq(1)),
year (year));

}

// --

private static final double MSEC_PER_YEAR
= 365.0 * 24.0 * 60.0 * 60.0 * 1000.0;

private static final double INCREMENT = 0.123456789;

final static Calendar[] x = new Calendar[5000];

private static void initTestdata(){
for (int i = 0; i < x.length; i++) {

x[i] = Calendar.getInstance();
x[i].setTimeInMillis((long)(i * INCREMENT * MSEC_PER_YEAR));

}
}

Fig. 3. Example 1: Matching all Fools’ Days

import org.w3c.dom ;

static Pattern<Node> ancestor(Pattern<? super Node> body)
static Pattern<Node> ancestorOrSelf(Pattern<? super Node> body)
static Pattern<Element> attr(String name)
static Pattern<Element> attr(String namespaceURI, String localName)
static Pattern<Element> attrNode(String name, Pattern<? super Attr> body)
static Pattern<Element> attrNode(String namespaceURI,

String localName, Pattern<? super Attr> body)
static Pattern<Element> attrValue(String name, Pattern<? super String> body)
static Pattern<Element> attrValue(String namespaceURI, String localName,

Pattern<? super String> body)
static Pattern<Node> child(Pattern<? super Node> body)
static Pattern<Node> comment()
static Pattern<Node> descendant(Pattern<? super Node> body)
static Pattern<Node> descendantOrSelf(Pattern<? super Node> body)
static Pattern<Node> element(Pattern<? super Element> body)
static Pattern<Node> followingSibling(Pattern<? super Node> body)
static Pattern<Node> localName(String localName)
static Pattern<Node> name(String namespaceURI, String localName)
static Pattern<Node> namespaceURI(String namespaceURI)
static Pattern<Node> nextSibling(Pattern<? super Node> body)
static Pattern<Node> parent(Pattern<? super Node> body)
static Pattern<Node> precedingSibling(Pattern<? super Node> body)
static Pattern<Node> previousSibling(Pattern<? super Node> body)
static Pattern<Document> root(Pattern<? super Element> body)
static Pattern<Element> tagName(String tagName)
static Pattern<Node> textContent(Pattern<? super String> body)

Fig. 4. The W3C XML DOM Pattern Library

private static final String XHTMLNS = "http://www.w3.org/1999/xhtml";

/** Matches Nodes which are Elements from the xhtml namespace with
the given local name, and then match the subPattern.

*/
private static Pattern<Node> xhtml(String localName,

Pattern<? super Element> subPattern) {
return element(both(name(XHTMLNS, localName), subPattern));

}

private static Pattern<Node> defTerm(Pattern<? super Element> dtPattern) {
return xhtml("dt", dtPattern);

}
private static Pattern<Node> defDescription(Pattern<? super Element> ddPattern) {
return xhtml("dd", ddPattern);

}

/** Matches an "xhtml:dt" element immediately followed by an
"xhtml:dd" element, iff both match the resp. pattern argument.

*/
private static Pattern<Node> defPair(Pattern<? super Element> dtPattern,

Pattern<? super Element> ddPattern) {
return both(defTerm(dtPattern), nextSibling(defDescription(ddPattern)));

}

/** Matches an "xhtml:a" element iff its href attribute matches the String pattern.

*/
private static Pattern<Node> anchorHRef(Pattern<? super String> href) {
return xhtml("a", attrValue("href", href));

}

/** Matches a String iff it is/is not a "local" uri

*/
private static Pattern<String> localURL(final boolean local) {

return new Atomic<String>() {
public boolean match(String x) {

return x.startsWith("#") == local;
}
@Override public String toString() {

return "localURL(" + local + ")";
}

};
}

/** Aux function: returns whether a given text contains a given keyword,
possibly after stripping some framing brackets.

*/
private static boolean textContainsDefTerm (final String text,

final String defWord){
final String keyword = defWord.startsWith("[")

? defWord.substring(1,defWord.length()-1) : defWord ;
return text.toUpperCase().contains(keyword.toUpperCase());

}

Fig. 5. Example 2: Matching the XHTML XHTML specificaton

"This version:" refers to "http://www.w3.org/TR/2002/REC-xhtml1-20020801"

"Latest version:" refers to "http://www.w3.org/TR/xhtml1"

"Previous version:" refers to "http://www.w3.org/TR/2000/REC-xhtml1-20000126"

"Diff-marked version:" refers to "xhtml1-diff.html"

"Well-formed" refers to "http://www.w3.org/TR/REC-xml#sec-well-formed"

"[CSS2]" refers to "http://www.w3.org/TR/1998/REC-CSS2-19980512" ⋆
"[CSS2]" refers to "http://www.w3.org/TR/REC-CSS2" ⋆
"[DOM]" refers to "http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001" ⋆
"[DOM]" refers to "http://www.w3.org/TR/REC-DOM-Level-1" ⋆
"[DOM2]" refers to "http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113"

"[DOM2]" refers to "http://www.w3.org/TR/DOM-Level-2-Core"

"[HTML]" refers to "http://www.w3.org/TR/1999/REC-html401-19991224" ⋆
"[HTML]" refers to "http://www.w3.org/TR/html401" ⋆
"[RFC2045]" refers to "http://www.ietf.org/rfc/rfc2045.txt" ⋆
"[RFC2046]" refers to "http://www.ietf.org/rfc/rfc2046.txt" ⋆
"[RFC2046]" refers to "http://www.ietf.org/rfc/rfc2046.txt" ⋆
"[RFC2119]" refers to "http://www.ietf.org/rfc/rfc2119.txt" ⋆
"[RFC2376]" refers to "http://www.ietf.org/rfc/rfc2376.txt" ⋆
"[RFC2396]" refers to "http://www.ietf.org/rfc/rfc2396.txt" ⋆
"[RFC2854]" refers to "http://www.ietf.org/rfc/rfc2854.txt" ⋆
"[RFC3023]" refers to "http://www.ietf.org/rfc/rfc3023.txt" ⋆
"[RFC3066]" refers to "http://www.ietf.org/rfc/rfc3066.txt" ⋆
"[RFC3236]" refers to "http://www.ietf.org/rfc/rfc3236.txt" ⋆
"[XHTML+MathML]" refers to "http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd"

"[XHTMLMIME]" refers to "http://www.w3.org/TR/2002/NOTE-xhtml-media-types-20020801"

"[XHTMLMIME]" refers to "http://www.w3.org/TR/xhtml-media-types"

"[XHTMLMOD]" refers to "http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410"

"[XHTMLMOD]" refers to "http://www.w3.org/TR/xhtml-modularization"

"[XML]" refers to "http://www.w3.org/TR/2000/REC-xml-20001006" ⋆
"[XML]" refers to "http://www.w3.org/TR/REC-xml" ⋆
"[XMLNS]" refers to "http://www.w3.org/TR/1999/REC-xml-names-19990114"

"[XMLNS]" refers to "http://www.w3.org/TR/REC-xml-names"

"[XMLC14N]" refers to "http://www.w3.org/TR/2001/REC-xml-c14n-20010315"

"[XMLC14N]" refers to "http://www.w3.org/TR/xml-c14n"

Fig. 6. The results of Matching the XHTML XHTML specificaton.

