
Paisley: A Pattern Matching Library for Arbitrary
Object Models

Baltasar Trancón y Widemann
Technische Universität Ilmenau

c nla @or. ur n n t aa e eds .m utal t -ab i

Markus Lepper
<semantics/> GmbH

Abstract: Professional development of software dealing with structured models re-
quires more systematic approach and semantic foundation than standard practice in
general-purpose programming languages affords. One remedy is to integrate tech-
niques from other programming paradigms, as seamless as possible and without forc-
ing programmers to leave their comfort zone. Here we present a tool for the imple-
mentation of pattern matching as fundamental means of automated data extraction
from models of arbitrary shape and complexity in a general-purpose programming
language. The interface is simple but, thanks to elaborate and rigorous design, is also
light-weight, portable, non-invasive, type-safe, modular and extensible. It is compat-
ible with object-oriented data abstraction and has full support for nondeterminism by
backtracking. The tool comes as a library consisting of two levels: elementary pat-
tern algebra (generic, highly reusable) and pattern bindings for particular data models
(specific, fairly reusable, user-definable). Applications use the library code in a small
number of idiomatic ways, making pattern-matching code declarative in style, easily
writable, readable and maintainable. Library and idiom together form a tightly em-
bedded domain-specific language; no extension of the host language is required. The
current implementation is in Java, but assumes only standard object-oriented features,
and can hence be ported to other mainstream languages.

1 Introduction

Declarative (functional or logical) languages are more or less equally powerful both when
creating compound data, and when extracting their components: Term/pattern constructors
on the right/left hand side of definition equations, respectively, offer balanced syntactic
support with clean, inverse algebraic semantics. Object-oriented languages, by contrast,
mostly offer the desirable feature of compositionality only when creating objects, but lack
a corresponding primitive idiom for extraction. Instead, explicit getter methods, type casts,
assignments to local variables and explicit case distinction have to be applied in an imper-
ative programming style, which is inadequate to the purpose of mere querying.

Obviously it is desirable to enrich object-oriented programming practice by techniques
from more declarative styles, together with the corresponding supporting infrastructure.
“Declarative” in this context means that access operations form an algebra and entail se-
mantic properties by induction in their structure. If this is done in a smooth and natural
way, it will make program source texts more efficient and enjoyable to write, as well as
better readable and maintainable.

There are techniques, like the visitor and rewriter patterns, which introduce a more declar-
ative style of writing in object-oriented data evaluation. In [LT11], we have demonstrated
how visitor-based extraction can be optimized using a combination of static and dynamic
analyses. However, this technique corresponds to a more global, “point-free” way of for-
mulating queries and is too heavy-weight and semantically too loosely defined for the
purpose of point-wise extraction of details, for which local access operations are known.

Here, we investigate the import of a concept well-proven in all kinds of programming
styles into the object oriented paradigm, namely pattern matching: The Paisley library
presented below is a generic programming aid for data extraction by pattern matching that
unifies desirable features of declarative paradigms with a pure object-oriented approach
to data abstraction. It comes in two parts: a basic library and a programming idiom that
uses the library operations as its core vocabulary. Problem-specific composite operations
can be provided by the user by extending the library cleanly through subclassing. Our
implementation is hosted in Java, but nothing prevents the same technique to be used in
other strongly typed object-oriented environments such as C++ or .NET.

The present article extends an earlier tool demonstration paper [TL12] with more recent
features, additional technical details and a comparative evaluation of the design. Detailed
API documentation and downloads are available online at [TL11].

2 Standards of Pattern Matching

Pattern matching, in the wide sense, plays an important role in many different kinds of
programming environments. But a close look shows that the techniques applied in the
various fields differ substantially regarding theoretical foundation and expressiveness, the
treatment of nondeterminism, type discipline, etc. These are the relevant role models,
positive or negative, for our approach:

String Processing with Regular Expressions Here typing is a trivial matter, since pat-
terns refer to character strings only. Theoretical foundation is sound; recently sound se-
mantics have been defined even for backward group references [BC08]. Nondetermin-
ism is either resolved locally by various flavours (greedy, reluctant etc.) of operators,
or exposed to the user as global search. Focus is often on performance-critical applica-
tions, such as real-time filtering of high-frequency network traffic, making compilation to
specially designed automata the technique of choice. Consequently, object-oriented data
models play no role in those scenarios, and our approach does not apply.

Functional Programming with Algebraic Datatypes Inverse constructors are central to
data extraction and equational function definition in functional programming languages
(Hope, ML, Haskell, etc.), and share the full type discipline of the language. Nondeter-
minism arises not within one pattern, but rather between overlapping patterns of equations,
and is usually resolved implicitly by a first-fit rule. In the context of the multi-paradigm
language Scala, pattern matching has moved closer to object-oriented programming, by
virtue of the case class construct and the unapply magic method; see [EOW07].

XML Navigation and Deconstruction For this purpose the XPath [CD99] pattern no-
tation is the basis for the majority of transformation systems, like XSL-T, Xquery, XJ,
Xact, JDOM and more. There is a complete theory for a subset of XPath excluding data
value comparisons [GL06]. Alternative formalisms are less popular but extant; e.g. XDuce
[HP00] is a functional language with patterns serving as types, with full static checking,
and with regular expressions over patterns to match heterogeneous lists.

Logic Programming with Goals and Unification Logic programming languages (Prolog
etc.) offer a distinct quality by making nondeterminism, unification of terms with free
variables, and exhaustion of solution spaces (encapsulated search) first-class constructs of
the language. They are usually weakly typed, but theoretically well explored.

Model Query and Transformation In dedicated model query languages pattern match-
ing is a central functionality as well: the evaluation of a query delivers a subset of model
nodes. Selection criteria range from simple checks on attribute values to complex rela-
tional constraints. In graph transformation systems, graph patterns feature prominently
as the left hand sides of rewrite rules. The pervasive nondeterminism in graphs is often
resolved by explicit control flow. See for instance the “Rule Application Control Lan-
guage” of GrGen.NET [BGJ11]. Pattern notations take a vast number of theoretically and
pragmatically distinct forms in the multitude of existing systems. For instance, the query
language GReQL [EB10] offers regular path expressions to express complex patterns.

3 Design of Paisley Pattern Matching

3.1 Requirements

Porting pattern matching to an object-oriented environment is not a trivial task. On one
hand, there are semantic problems to be solved, mostly pertaining to the impedance mis-
match between object interfaces and algebraic pattern calculi. On the other hand, there is a
multitude of theoretically possible implementation techniques. The Scala paper [EOW07]
gives a good survey on different strategies, complemented with experimental evaluation.
At the end of this article we will apply their criteria to our solution.

The Paisley approach is distinguished by a carefully selected canon of rigorous design
requirements:

1. Declarative, readable, writable, customizable. Patterns express the programmer’s
intention of data extraction with as little formal noise as possible. This improves
significantly over standard imperative/object-oriented patterns in terms of self-docu-
mentation and maintainability.

2. Full reification: no parsing/compilation overhead at runtime. Patterns are typed
host-language objects; ill-defined usage is detected at compile time. This makes
our approach diametrically opposed to dynamic notations, in particular traditional
regular expression libraries such as java.util.regex.

3. Statically type-safe variables. No need to down-cast variable bindings or check their
types at runtime.

4. Statically type-safe patterns. Detect ill-typed pattern matching attempts as often as
possible.

5. No language extension: independent of host compiler/VM. Solution can be used
transparently with off-the-shelf programming platforms and runtime environments.

6. No assumptions on host language beyond standard OOP. Solution can be reimple-
mented in any standard object oriented programming language. Custom extensions
can use the full power of the host language, at the user’s discretion and risk.

7. No adaptation of model datatypes required. Applies equally to data models from
third-party repositories or developed without pattern matching in mind; no source
access required.

8. Support for multiple views per type. Different collections of patterns can expose
different structural aspects of a data model. Sharpens the preceding requirement.

9. Support for continuation-style nondeterminism. Patterns are ordinary objects with
hidden inner state which locally and completely memorizes the current backtracking
situation. Access to successive matches should be postponable indefinitely, even
across serialization and de-serialization of all objects involved.

10. Nondeterminism incurs no significant cost unless actually used. Implies absence of
central storage or control mechanisms, and lazy exploration of alternatives.

From the programming language perspective, the main focus is on strict typing. This is
enforced by type relations of different kinds which are mapped to the type system of the
host language, and thus inherit its checking and diagnostics facilities (for API see Fig.1):

1. Pattern and data. The type of data which can be matched against a given pattern is
described by a parameter of the patterns’ type: An instance of class Pattern<A>
will match all instances of type A.

2. Pattern lifting, contravariantly. The type of any function which lifts a pattern on an
object’s field to a pattern on the object as a whole, or from a member object to a
collection, etc., is always a function type between the corresponding pattern types:
An access operation on class A that yields a subobject of type B induces a lifting
function from Pattern to Pattern<A>.

3. Pattern combinators respect data types. The Paisley pattern combinators require
compatible types of the patterns’ targets: A Pattern<A> and a Pattern
combined always result in a Pattern<C> where C is a subtype of both A and B.

4. Pattern variables limit the type of their possible results. On the construction side,
a pattern variable has a type attributed with the type it can match, as any other
pattern. After successful match, on the binding side, the variable offers a typed

getter interface: A Variable<A> is a Pattern<A> and yields values of static
type A.

3.2 Basic Implementation Technique: DSL by Library + API

Pattern matching directives can be seen as a domain specific language (DSL) to be embed-
ded into a general-purpose host programming language, in this case Java. For this there
exist some well-known basic philosophies:

The requirements (2)–(4), for static type safety and reification rule out mere textual encod-
ings, as criticized above. On the other hand, the requirement (5) for compiler independence
rules out implicit compile-time handling of pattern matching code. Another possible solu-
tion is a generative approach, where DSL front-end syntax is translated into host language
source code in a dedicated pre-processing step. This approach is used by many of the
authors’ other tools.

Here we chose instead an API and library-based implementation: Patterns are constructed
at run-time, in terms of host language objects with certain semantics. We prefer this ap-
proach because it is far more lightweight and flexible. Of course, if appropriate, complex
stereotypical code fragments on top of this library can be generated automatically from a
more concise domain-specific notation, as for instance done by our umod tool [LT11].

3.3 Imperative View on Pattern Matching

The classical semantics of patterns as the inverse of constructor terms of algebraic data-
types, de-facto standard in declarative languages, does not carry over smoothly to the
object-oriented paradigm, because object constructors generally lack the mathematical
benevolent properties of their algebraic counterparts, namely extensionality, injectivity,
disjointness and completeness.

A looser notion of pattern matching, more appropriate to the abstraction style of object
orientation, is to consider it the reification and composition of certain categories of data
extraction operations: Testing classifies objects as either acceptable or not; projection de-
scends into the structure of the subobjects and extracts primitive data attributes; binding
assigns data to variables.

These three aspects can be delimited precisely in well-written object-oriented code; they
correspond to simple local idioms. A fourth aspect however, namely logic, is implicit and
scattered across the control flow structure of code, in terms of sequences, conditionals,
case distinctions, loops, etc. That the logical aspect comes with subtle and non-local
ramifications should be evident to everyone who has successfully hand-coded a parser.
This is a major source of difficulties in writing, reading and maintaining object-oriented
code. Our central motivation behind the Paisley approach is to put logic on equals footing
with the former three aspects in an object-oriented setting.

abstract class Pattern<A> {
public abstract boolean match(A target);
public boolean matchAgain();

public static <A> Pattern<A>
both(Pattern<? super A> first, Pattern<? super A> second);

public static <A> Pattern<A>
either(Pattern<? super A> first, Pattern<? super A> second);

}

class Variable<A> extends Pattern<A> {
public A getValue();

public List<A> eagerBindings(Pattern<? super B> root, B target);
public Iterable<A> lazyBindings(Pattern<? super B> root, B target);

public Pattern bind(Pattern<? super B> root, Pattern<? super A> sub);
public Pattern<A> star(Pattern<? super A> root);
public Pattern<A> plus(Pattern<? super A> root);

}

abstract class Transform<A, B> extends Pattern<A> {
protected final Pattern<? super B> body;

protected abstract B apply(A target);
protected abstract boolean isApplicable(A target);

}

Figure 1: Interface synopsis (core)

The design of our library is such that these four concerns are separated as much as possible,
but can be composed as freely as required. A notable implication is that logical structure,
in particular with respect to nondeterminism, is given the most fundamental operator basis
possible, namely fully compositional ad-hoc conjunction and disjunction of subpatterns,
of which traditional pattern aggregation and case distinction are merely special cases.

3.4 The Pattern interface

The main interface of the library is the abstract base class Pattern<A> of patterns that
can process objects of type A. A pattern Pattern<A> p is applied to some target data x
of type A or any subtype by calling p.match(x), returning a Boolean value indicating
whether the match was successful.

In case the result is true, variables occurring in the pattern are guaranteed to be bound
under conditions inductive in the logical structure of the pattern: A successful match binds
variables in all branches of a conjunction, and in some branch of disjunction. Conversely,
a variable is certainly bound if it occurs in all disjunctive branches or in some conjunctive
branch. In case the matching result is false, variable bindings are unspecified.

After matching successfully, and using the values of bound variables, the parameter-less
method p.matchAgain() may be called. This is how nondeterminism, that is the fact
that a given pattern matches a given target in more than one way, is exposed at the interface.

The call of matchAgain() causes a new matching attempt of the same target by back-
tracking. The result has the same interpretation as for match(x), so matchAgain()
can be iterated as long as its result is true. The match is different in some way, in the
sense the some new disjunctive branch is taken, in each successful call. The default imple-
mentation of matchAgain() always returns false, specifying a deterministic pattern.

Iteration over all possible matches of a nondeterministic pattern is effected simply by a
do . . . while loop, with minimal redundancy:

if (p.match(x)) do
doSomething();

while (p.matchAgain());

3.5 Predefined Tests and Combinators

The Paisley library offers factory methods for patterns wrapping ubiquitous test and getter
methods, and generic pattern combinators and liftings.

Basic rule for the whole implementation is strict typing, as postulated above in section 3.1.
In this context it is essential to observe that all patterns except variables are contravari-
ant: A pattern capable of matching any supertype B of A can act as a Pattern<A>,
hence Pattern should be treated as a subtype. This is expressed by library meth-
ods consistently taking parameters of wildcard types with lower bounds, in forms such as
Pattern<? super A>.

In the current implementation there are static factory classes ReflectionPatterns,
lifting some Java reflection operations such as isInstance or getAnnotation, as
well as StringPatternswhich lifts standard string operations like startsWith, but
also the interface of the java.util.regex package. PrimitivePatterns wraps
Java primitive types and some core methods such as equals or compareTo.

CollectionPatterns lifts patterns on elements to patterns on collections. This can
be used as a controlled source of nondeterminism: Search patterns such as constructed by
anyElement(Pattern) try all contained elements for match()/matchAgain(),
while deterministic patterns such as constructed by get(int, Pattern) try to match
only the one element at the given position. Variants for array types are also provided.

The class Pattern itself provides a framework of logical core combinators: binary op-
erators both for conjunction and either for disjunction, to be discussed in detail in
section 3.8 below; the constant patterns any() and none(), matching everything and
nothing, respectively, as base cases; n-ary vararg combinator variants for convenience.

Modifications of the solution space of patterns are implemented as instance methods.
p.noMatch() yields a pattern that matches if p itself has no solution. The match is
deterministic and binds no variables; compare to negation-by-failure in logic program-
ming. p.uniquely() matches iff p itself matches with exactly one solution, that is
p.matchAgain() fails immediately. The match binds all variable also bound by p.

3.6 Variables

A pattern variable is simply a pattern of class Variable<A> that matches always, and
binds to the matched object for later retrieval via the getValue() method. The variable
interface is unique in the sense that its type parameter occurs in a return type, so it does
not behave contravariantly as other pattern constructs do; cf. the preceding section 3.5.

The basic idiom of pattern matching is thus:
Variable<C> vc = new Variable<C>();
Variable<D> vd = new Variable<D>();
Pattern<A> p = myPattern(vc, vd); // known to bind vc AND vd
if (p.match(x))
doSomething(vc.getValue(), vd.getValue());

It is not by accident that the pattern variables vc and vd in this example have local dec-
larations with precise static type (first two lines): This style enables the full use of static
type information for bound values, even if the matching pattern has been constructed from
generic building blocks that are defined independently of the type of occurring variables.

Figure 2 shows how variables are used in a Paisley compound pattern:

References to variables must be retained explicitly; they are not accessible via the con-
taining pattern, as this would break compositionality. Therefore they must be constructed
first, retaining a reference, before being incorporated into a newly constructed pattern. In
order to safeguard against race conditions, it is good practice to give pattern variables local
visibility only.

Variables are in the imperative style, that is simple, mutable containers for a single value;
they do not provide either the unification functionality or the single-assignment/backtrack-
ing access mode of logical variables. Therefore, in most cases each variable appears ex-
actly once in a given pattern, complex disjunctions aside.

After a successful match, variables may be bound to subobjects of the matched target
datum. Whether a certain variable is bound or not may depend on the chosen alternative
of a disjunction. The user is fully responsible for reading only bound variables.

Since variables have no distinguished initial “unbound” state, there is no dynamic check
whether a variable has been bound by the most recent matching attempt: unsuccessful
matches leave the occurring variables in unspecified state. Fortunately, the static effect
of a pattern on given variables can be inferred inductively from its logical structure; the
inference rules are available both as user documentation and runtime queries; details are
beyond the scope of this article.

The advantage of this form of variable binding is that initialization costs are minimal
and patterns can be reused without special preparation. It also implies that it is trans-
parent to the user which branch of a disjunction has been taken; observed values of
variables cannot be used to reconstruct the information. While this is the desired ab-
straction in most cases, special “marked” forms of disjunction (implemented by classes
IntBranch and EnumBranch) can be used to retain the information for complex nested
searches.

?

final A x = ...
Variable<C> vc

= new Variable<C>();
Variable<D> vd

= new Variable<D>();
Pattern<A> p

= Pattern.either(...
... (vc) ...
... (vd) ...);

if (p.match(x)){...
// maybe vc OR vd
// is now bound

}

Figure 2: Explicit references to data, variables and pattern are required.

The restricted role of variables, although rather poor from a high-level declarative view-
point, mimics closely the behaviour of local variables and fields in object-oriented pro-
gramming, and should therefore feel natural to the programmer.

3.7 Encapsulated Search

For patterns with a single variable, bindings for all matches can be collected eagerly or
lazily with eagerBindings(Pattern) and lazyBindings(Pattern), respec-
tively, thus effecting fully reified encapsulated search as strongly typed objects of the Java
collection framework. The iteration pattern for all matches of pattern p for target x sim-
plifies accordingly, with operational semantics equivalent to the loop given in section 3.4:
for (C c : vc.lazyBindings(p, x))
doSomething(c) ;

The alternative is to calculate all possible matches before any processing, i.e. eagerly. This
works of course only if the number of possible matches is finite:
List<A> list = vc.eagerBindings(p, x);

In the current implementation, simultaneous encapsulated search for multiple variables is
not implemented, because of the lack of support for ad-hoc tuple types in Java.

3.8 Backtracking and Reentrance

The paradigmatic platform for backtracking nondeterminism is of course the Prolog lan-
guage. Implementation hints can be gleaned from its operational semantics, in particular
Warren’s Abstract Machine (WAM) [War83].

The WAM uses to less than four categories of stack space (of which call stack and choice
stack are interleaved to form the so-called local stack) to control nondeterminism and vari-

able bindings. Fortunately for us, the simpler nature of imperative variables in Paisley and
the underlying Java Virtual Machine (JVM), where no variable bindings, let alone object
allocations, need to be undone by backtracking, allows a significant reduction of com-
plexity: Besides the regular call stack, only a choice stack for yet unexplored disjunctive
branches is required. And because the latter is strictly local to each matching, it can be
implemented decentrally and transparently, distributed and hidden in the pattern combina-
tor instances themselves. In contrast to an interleaving implementation, this requires no
privileged access to the JVM stack, and is hence easily portable to other platforms.

The disjunctive pattern either(p, q) behaves as p initially, but switches to q after
solutions to p are exhausted. The conjunctive pattern both(p, q) fixes a solution for p
and produces solutions for q, but retries p and resets q whenever solutions to the latter are
exhausted. These modes of operation subsume plain Boolean combination for determin-
istic argument patterns, and result in the concatenation and Cartesian product (in lexical
order), respectively, of solutions for independent argument patterns. Overall behaviour can
be more complex if q depends on p via observation of variable bindings or side effects;
see section 3.12 below.

Note that a naive implementation of conjunction in terms of sequential matching attempts
would not result in a full implementation of backtracking, but rather in the partial back-
tracking found in many simple search algorithms: The first argument pattern is committed
to a solution before the second is tried; the latter is not reiterated for alternative solutions
of the former. Contrast with the else branch in the code of Figure 3 below.

To illustrate the operation of the backtracking mechanism in detail, Figure 3 shows parts
of the implementation of the both combinator. The local choice stack segment records
whether the left argument pattern has succeeded and a reference to the matched target.
The match method attempts to pair a solution for each argument pattern, and sets up the
choice stack for later retrieval by matchAgain() as a side effect. The implementation
of matchAgain() is almost identical, except that the grey statements are omitted and
the underlined function head and recursive call are replaced by matchAgain(). The
either combinator implements disjunction in an analogous manner.

As a consequence of the residual implementation of the choice stack, patterns are not
thread safe: They can be reused sequentially, as required for both (see Figure 3), but not
concurrently. On the upside, this allows for a simple, local and therefore highly efficient
implementation of the cut: Patterns implement a method cut() that discards unused
solutions with minimal effort, and a method clear() that additionally purges obsolete
references from the choice stack, in order to control heap space usage even if pattern
objects remain live for long times. Both methods descend recursively to subpatterns.

3.9 Specialized Pattern Libraries

The current implementation of Paisley comes with a few more application-specific groups
of pattern combinators. In particular, the static factory class XMLPatterns supports
content extraction and navigation along all axes of a W3C XML document object model

private Pattern left, right; // pattern tree
private A target_save; // local choice stack
private boolean left_matched; // local choice stack

public boolean match(A target) {

if (left_matched = left.match(target)) {
target save = target; // for use by matchAgain()
if (right.match(target)) return true;
else

while (left_matched = left.matchAgain())
if (right.match(target_save)) return true;

target_save = null; // solutions exhausted
}
return false;

}

Figure 3: Implementation of backtracking (excerpt)

(DOM [HHW+00]). It shows compositional abstraction through pattern lifting, and non-
invasive “patternification” of an existing, abstract data model, namely the standard Java
package org.w3c.dom. Showcase examples using this and other pattern factories are
included in the Paisley download package at [TL11]. Figure 4 shows an excerpt that deals
with “glossary entries” in an XHTML document, that is adjacent term–description (<dt>–
<dd>) pairs in a definition list (<dl>). In particular, the self-contained example code
extracts from a document the full relation between terms and hyperlinks, that is anchors
(<a>) with a href attribute, contained in the respective following descriptions. Note how
the implementation is, mandatory formal noise of Java aside, hardly more complicated
than the prose description.

This example shows the classical way of using patterns, where the variables appear in leaf
position, and the context is specified (“generate”). Paisley supports the symmetric situa-
tion where the content of the bound structures is narrowed further (“test”). For instance,
extending the pattern r to
glossaryPair(both(dt, textContent(startsWith("c"))),

descendant(anchorWithHRef
(both(href, not(startsWith("#"))))))

will match only glossary entries starting with lower case “c” and anchors to non-local
hrefs.

For other, user-defined tasks the implementation strategy is similar: encapsulating all dirty
details of testing, iterating, backtracking and cutting into library patterns, thus creating a
clean basis on which the operational code can be formulated in an intentional, declarative
way.

import eu.bandm.tools.paisley.*;
import static eu.bandm.tools.paisley.Pattern.*;
import static eu.bandm.tools.paisley.XMLPatterns.*;
import org.w3c.dom.*;

class XML_example {
final static String XHTMLNS = "http://www.w3.org/1999/xhtml";
static Pattern<Node> xhtmlElement(String localName,

Pattern<? super Element> element) {
return element(both(name(XHTMLNS, localName), element));

}
static Pattern<Node> glossaryPair(Pattern<? super Element> dt,

Pattern<? super Element> dd) {
return both(xhtmlElement("dt", dt),

nextSibling(xhtmlElement("dd", dd)));
}
static Pattern<Node> anchorWithHRef(Pattern<? super String> href) {
return xhtmlElement("a", attrValue("href", href));

}
final Variable<Element> dt = new Variable<Element>();
final Variable<String> href = new Variable<String>();
final Pattern<Element> r =

glossaryPair(dt, descendant(anchorWithHRef(href)));
final Pattern<Document> p = root(descendantOrSelf(r));

{ // ... let "doc" be a w3c dom representation of an XHTML document
if (p.match(doc)) do {
System.out.println("Glossary entry \""

+ dt.getValue().getTextContent()
+ "\" refers to \"" + href.getValue() + "\"");

} while (p.matchAgain());
}

}

Figure 4: XHTML Glossary Entry Example

3.10 Projection and Testing

The base case of data extraction is a conceptual total function f : A → B; the archetypal
example being a getter method in class A which reads some member field of type B. This
induces a function that maps each pattern p of type Pattern to a pattern of type
Pattern<A> that matches a target x by having pmatch f(x). Given a suitable reification
f of f , this can be written in Paisley simply as transform(f, p).

The more general case is that of partial functions, where an undefined result causes the
matching to fail. These are realized conveniently as subclasses T of Transform<A, B>,
which implement the boolean isApplicable(A) and B apply(A) methods ex-
plicitly, with the obvious semantics.

In principle, Transform is a complete basis for projection and testing, that is for all
functional pattern components except variables. Of course, hand-coded projections/tests
can be defined by the user, where more convenient or efficient for the application at hand.

3.11 Pattern Substitution and Closure

Apart from extracting data from a match, variables also play a meta-level role as hooks for
pure pattern algebra, thus enabling powerful generic abstractions and transformations.

The most basic one is substitution, which enables pattern parametrization: In the code
fragment

Variable<V> v = new Variable<V>();
Pattern<R> top = ... (v) ... ;
Pattern<V> sub = ... ;
Pattern<R> newTop = v.bind(top, sub);

newTop denotes a pattern in which every occurrence of v is replaced by a reference to
sub. The implementation works non-invasively by recursively nested matching; hence,
even hand-coded patterns which hide their logical structure (if any) can safely be sub-
stituted into. Duplication of substitution replacements is avoided by exploiting sequential
reusability of patterns. As a moniker for the programming interface, read v.bind(p, q)
as the lambda calculus expression (λv.p)q.

In extension of the quantifier perspective on patterns, variables also serve as the bridge-
head of “star” or “plus” Kleene closures:
Variable<V> v = new Variable<V>();
Pattern<V> once = ... (v) ... ;
Pattern<V> some = v.star(once);
Pattern<V> more = v.plus(once);

The newly constructed patterns some/more are the star/plus closures, respectively, of the
path relation between once and v, insofar as they obey the expected mutually recursive
behavioral equivalence relation

some ≡ either(v, more) more ≡ v.bind(once, some)

Using these, the complex pattern constructor XMLPatterns.descendantOrSelf(p)
featured in Figure 4 can be defined concisely as
v.bind(v.star(child(v)), p)

where v is a fresh variable, and the primitive child is implemented in terms of the canon-
ical org.w3c.dom.Node getters getFirstChild() and getNextSibling().
Note how the two sources of nondeterminism, regarding horizontal (child) and vertical
(star) position in the document tree, respectively, combine completely transparently.

3.12 Breaking the Paradigm

The “pragmatic philosophy” of Paisley is to leverage a declarative style of writing and
thinking, while the code “behind the scenes” remains genuinely imperative, with no inter-
mediate transformation.

Whether any knowledge of the implied control flow is considered part of pattern semantics,
is a fundamental decision on the level of “coding style guidelines”, and its consequences
must be considered carefully. Here clearly a Rubicon would be crossed.

On the upside, by taking advantage of sequential execution order, powerful functionalities
like non-linear patterns can be implemented. The following pattern p, built using the Pais-
ley XML facilities discussed in section 3.9, matches all XHTML anchors which contain
their target URL literally in their text content:
Variable<String> v = new Variable<String>();
Pattern<Element> p =
all(name(XHTMLNS, "a"),

attrValue("href", v),
descendant(textContent(contains(v.getValue()))));

On the downside, it is evidently easy to accidentally break the declarative matching seman-
tics, resulting in all the kinds of subtle and hard-to-debug program behaviour we set out to
avoid with our design in the first place. Extending the library in this way, while technically
supported and perhaps pragmatically valid, is certainly a different use case altogether; the
two should be distinguished carefully for fundamental software engineering reasons.

4 Conclusion

4.1 Related Work

A theoretically elegant design of pattern matching capabilities for Java, JMatch, is pre-
sented in [LM03]. While it has had much impact, and is cited heavily by later work, there
are severe drawbacks: The approach assumes a perspective on pattern matching that is very
much like logical programming. As a result, their nondeterminism is rather heavy-weight:
It requires CPS transformation of certain program parts, and hence interferes severely
with apparent control flow, making program understanding and debugging forbiddingly
difficult. Furthermore, the solution is a host language extension and requires a special aca-
demic compiler. All such experiments are eventually doomed to oblivion unless some big
vendor adopts the technology.

As mentioned above, the multi-paradigm language Scala [OSV10] incorporates a powerful
pattern matching idiom with clean semantics and user-defined extensibility, via singleton
objects and the unapply method [EOW07]. Being part of the core Scala design, it is
better integrated with the host language than our approach can ever hope to be. On the
other hand, we find the lack of nondeterminism and pattern algebra significant weaknesses.

4.2 Comparative Evaluation Framework

Concerning the evaluation of the design of different pattern matching mechanisms, a paper
[EOW07] from the Scala context introduced a grid of nine criteria. Omitting the last three,
which deal with concrete performance measuring and cannot easily be reconstructed, we
find that Paisley corresponds largely to the “extractor” type of solution discussed in that
paper, with some notable differences.

Conciseness of the Framework Programming overhead is required for the Paisley pro-
jection operations, see section 3.10 above. They correspond to the “extractors” in Scala,
and are a little more verbose than those, obviously due to the less expressive host language
syntax. Furthermore, the chain of delegation to embedded Paisley patterns must always
be written down explicitly, whereas in many situations a call to unapply will silently be
inserted in the Scala approach.

The disadvantages of Paisley are offset to some degree by the superior abstraction capabil-
ities, whereby for many applications predefined, highly generic library building block for
patterns are provided ready-to-use. Additionally, the Paisley approach does not share the
weakness of Scala pattern matching that descent into the structure of an object is reified,
and hence boxed and unboxed, at every level of unapply.

Conciseness of Shallow/Deep Matches The syntax of a concrete application of a complex
Paisley pattern has least possible syntactic noise. A source of noise that cannot be evaded
by the nature of our design is the absence of a rule concept in Paisley: There is no equiv-
alent of the Scala matching block that follows a match operator. Instead, the scheduling
of alternative patterns (rule left-hand sides) and the association of corresponding reactions
(rule right-hand sides) is expressed in the hosting object-oriented style.

Maintainability: Representation Independence No internal representation at all need be
revealed, because only the functional testing/projection interfaces have to be implemented.
See the XML DOM example cited in Section 3.9 above. Nevertheless, in many cases data
abstraction is trivial, so the extractors will follow the internal structure naturally.

Maintainability: Extending (Data) Variants / Patterns The data and the pattern world
may grow arbitrarily without mutually affecting the behaviour of older model class defini-
tions and patterns. Since patterns are only defined by their terse functional interface (see
Section 3.4), arbitrary new variants can be added, and existing combinations can freely be
abstracted at any time.

In terms of compositionality, this goes far beyond Scala extractors: Being transparent
regarding nondeterminism, also arbitrary disjunctions and even encapsulated searches can
be abstracted to self-contained pattern components.

References

[BC08] Michela Becchi and Patrick Crowley. Extending finite automata to efficiently match
Perl-compatible regular expressions. In Proceedings of the 2008 ACM CoNEXT Con-
ference, CoNEXT ’08, pages 25:1–25:12, New York, NY, USA, 2008. ACM.

[BGJ11] Jakob Blomer, Rubino Geiß, and Edgar Jakumeit. The GrGen.NET User Manual.
http://www.grgen.net, 2011.

[CD99] James Clark and Steven DeRose. XML Path Language (XPath) Version 1.0. W3C,
http://www.w3.org/TR/1999/REC-xpath-19991116/, 1999.

[EB10] Jürgen Ebert and Daniel Bildhauer. Reverse Engineering Using Graph Queries. In
Andy Schürr, Claus Lewerentz, Gregor Engels, Wilhelm Schäfer, and Bernhard West-
fechtel, editors, Graph Transformations and Model Driven Engineering, volume 5765.
Springer Verlag, 2010.

[EOW07] Burak Emir, Martin Odersky, and John Williams. Matching Objects with Patterns. In
Erik Ernst, editor, Proceedings 21st ECOOP, volume 4609 of Lecture Notes in Com-
puter Science, 2007.

[GL06] Pierre Genèves and Nabil Layaı̈da. A System for the Static Analysis of XPath. ACM
TRANSACTIONS ON INFORMATION SYSTEMS (TOIS, 24:2006, 2006.

[HHW+00] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Ro-
bie, Mike Champion, and Steve Byrne. Document Object Model (DOM) Level
2 Core Specification Version 1.0. W3C, http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113/, 2000. Recommendation.

[HP00] Haruo Hosoya and Benjamin C. Pierce. XDuce: A Typed XML Processing Language.
In Proc. 3rd Workshop on the Web and Data Bases (WebDB 2000), pages 226–244.
Springer-Verlag, 2000.

[LM03] Jed Liu and Andrew C. Myers. JMatch: Iterable Abstract Pattern Matching for Java.
In Practical Aspects of Declarative Languages, volume 2562 of Lecture Notes in Com-
puter Science. Springer, 2003.

[LT11] Markus Lepper and Baltasar Trancón y Widemann. Optimization of Visitor Perfor-
mance by Reflection-Based Analysis. In J. Cabot and E. Visser, editors, Theory and
Practice of Model Transformations, volume 6707 of Lecture Notes in Computer Sci-
ence. Springer, 2011.

[OSV10] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. artima, 2 edi-
tion, 2010.

[TL11] Baltasar Trancón y Widemann and Markus Lepper. Paisley Download and
Documentation Page. http://www.bandm.eu/metatools/docs/usage/
paisley-download.html, 2011.

[TL12] Baltasar Trancón y Widemann and Markus Lepper. Paisley: pattern matching á la carte.
In Proceedings 5th International Conference on Model Transformation (ICMT 2012),
volume 7307 of Lecture Notes in Computer Science, pages 240–247. Springer, 2012.

[War83] David Warren. An abstract Prolog instruction set. Technical Note 309, SRI Interna-
tional, Menlo Park, CA, 1983.

http://www.grgen.net
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.bandm.eu/metatools/docs/usage/paisley-download.html
http://www.bandm.eu/metatools/docs/usage/paisley-download.html

	Introduction
	Standards of Pattern Matching
	Design of Paisley Pattern Matching
	Requirements
	Basic Implementation Technique: DSL by Library + API
	Imperative View on Pattern Matching
	The Pattern interface
	Predefined Tests and Combinators
	Variables
	Encapsulated Search
	Backtracking and Reentrance
	Specialized Pattern Libraries
	Projection and Testing
	Pattern Substitution and Closure
	Breaking the Paradigm

	Conclusion
	Related Work
	Comparative Evaluation Framework

