
LLJava

Minimalist Structured Programming on the Java Virtual Machine
[Work-in-Progress Research Paper]

Baltasar Trancón y Widemann
Ilmenau University of Technology

Ehrenbergstraße 29, 98693 Ilmenau
Germany

baltasar.trancon@tu-ilmenau.de

Markus Lepper
semantics GmbH

Berlin
Germany

ABSTRACT
There is a wide gap in abstraction level between Java source
code and JVM bytecode. Many important software-related
tasks, such as specification and implementation of code syn-
thesis procedures, code inspection, software understanding
and teaching, can benefit from an adequate, intermediate
level of abstraction. Available bytecode assembly/disassem-
bly tools are ad-hoc and fall short of the requirements regard-
ing compositionality and clarity. We report on the design
and implementation of the LLJava language that bridges the
gap, based on careful analysis of bytecode information and
rigorous design.

CCS Concepts
•Software and its engineering → Compilers; Impera-
tive languages; Control structures; Source code generation;
Software reverse engineering; Documentation;

Keywords
Java virtual machine, bytecode, assembler/disassembler, code
model, ergonomics

1. INTRODUCTION
As intended by design, the Java Virtual Machine (JVM)

has become an attractive target environment for more than
vanilla Java programs. Experimental language extensions
and complex metaprogramming systems abound, bytecode in-
strumentation and aspect weaving is performed routinely, and
many alternative languages, both general and domain-specific
in scope, are hosted on the Java runtime environment. But
is the current situation convenient for the implementation,
documentation and inspection of JVM-hosted languages?
And if so, is Java source code or JVM bytecode the adequate
representation of “trans-Java” programs?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ ’16, August 29-September 02, 2016, Lugano, Switzerland
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4135-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2972206.2972218

Text Object Model Class File
(standalone DSL) (embedded DSL; API)

javap

ASM...
Jasmin...

LLJavaLLJava

Figure 1: Formats and Tools (Outline)

Consider the implementation case first: should we compile
to source code or to bytecode? In a heavyweight approach,
it is possible to synthesize Java source code and hand it to
the Java compiler. In a lightweight approach, it is likewise
possible to produce JVM bytecode directly. There exist both
object models (such as BCEL [2] and ASM [1]) and assemblers
(such as Jasmin [3, 8], Oolong [5, 4], and Krakatau [6]) that
handle the actual file format. Unfortunately, each of the
extreme approaches has some significant drawbacks:

On the one hand, not everything legal on the JVM (as
specified in [7], henceforth called JVMS) is convenient or
even possible to express as a Java program, and there is no
reliable way to direct javac to make particular choices in
code generation. Furthermore, compiling Java source code
to bytecode requires considerable resources, and may not be
feasible for dynamic code bases or on constrained platforms.

On the other hand, bytecode generation, as raw bytes, API
calls or assembly code, is burdened with an overwhelming
number of low-level details to be filled in, in the right context
and order. Diagnostic messages from JVM on-board bytecode
verifiers are notoriously terse and hardly helpful, so the
extra bits had better be consistent. Metaprogramming is
obstructed by the lack of abstraction and compositionality.

The issue becomes even more pressing when documenta-
tion of language implementations and inspection of programs
are considered: It is often necessary that programmers can
understand the effect of compilation to the JVM in theory,
and observe it in practice, respectively. Bytecode represen-
tations suffer from irrelevant verbosity and poor scalability
regarding the expression of structure, from the perspective
of the human reader and writer. This holds for the specified
binary form but also for the largely homomorphic textual
forms defined by ad-hoc tools such as javap. A simple
verbatim translation of the binary data into some text for-
mat is insufficient for nontrivial practical needs; the level of
abstraction and the applied strategies are crucial.

http://dx.doi.org/10.1145/2972206.2972218

Here, we present efforts towards a solution, both in design
and in implementation by a complete tool chain, as depicted
in Figure 1. In contrast to the existing approaches, we
emphasize the consistent treatment of redundancy, inference
rules and abstractions in nomenclature, based on rigorous
and explicit principles of analysis and design.

1.1 A Short Taxonomy of Bytecode Details
It is quite evident that the JVM bytecode as the low-level

target format of a Java compiler effects more details than
the Java language as its high-level source format; otherwise
there would be little point in compilation. But on second
thought, the details are there for a number of very different
reasons. We discern four basic categories:

1. Artifacts of Java features defined by mostly source-
level transformations (such as nested classes, enums, or
annotations).

2. Explication of semantics (such as the disentanglement
of control and data flow in expression evaluation by
introduction of an operand stack).

3. Organization of code and metadata for efficient lookup,
analysis and execution (such as operand stack limits,
or exception tables for a method body).

4. Encoding of the complex term graph representing a class
definition into a compact and platform-independent
sequence of bytes (such as type expression mangling,
or sharing of metadata elements in the constant pool).

We refer to the former two categories as conceptual details,
and to the latter two as technical details, respectively. We
postulate the working hypothesis for the present discussion:

A sweet spot on the continuum between extreme
high- and low-level representations of the JVM ca-
pabilities is found by making conceptual details ex-
plicit, and technical details implicit, respectively.

Existing bytecode tools and libraries already make some
technical details implicit, particularly ones of category 4 (such
as constant pool management), but fail to do so for others
(such as exposing the user to mangled type expressions). The
purpose of the present discussion, and of the LLJava project
it reports on, is to complete the abstraction process, and
to design a clear, convenient and self-explaining syntactic
representation for the remaining conceptual details.

1.2 Motivating Example
Consider Figure 2: three similar Hello World examples

retrieved from the repositories of various real-world byte code
assembly language projects. Whitespace has been altered in
some cases to align the corresponding content. The minor
syntactic differences are indicated by superscripts. Note
how syntactic traditions are mixed blithely in lines 1–2:
.class is old-school assembler directive style, public is
Java style (where the JVMS has ACC_PUBLIC), whereas
finally java/lang/Object is JVM mangled style. More
mangling is exposed in lines 4, 7, 9. All examples have
inline allocation of a string constant in line 8, with no direct
mention of constant pool management.

By contrast, lines 5–6 expose technical details, namely
metadata on space resources used by the method. Quite
tellingly, the major difference between the three examples is

exactly here: The Oolong variant gives correct tight bounds
for both operand stack (2) and local variables (1). The
Krakatau variant gives safe loose bounds (10) for both, likely
betraying the author’s unwillingness to do the counting. The
Jasmin variant omits the local variable bound altogether; it
is trivially inferred from the method signature by the tool.
Unfortunately, our experiments have revealed that the im-
plemented inference procedure is too trivial: the distribution
jasmin-sable 2.4.0-5 also allows omission of line 5, but un-
soundly “infers” an operand stack bound of 1, which is duly
refuted by bytecode verification.

For a JVM tool to produce up-to-date bytecode compatible
with class file format versions greater than 50.0, a substantial
amount of nontrivial type state inference must be performed
anyway: The JVMS requires full type information on operand
stack items and local variables of all basic blocks of control
flow graphs, for efficient verification. From this tabulated
type information not only resource limits, but operand types
of most instructions follow implicitly. We hold that the
same local type inference is naturally carried out by the
human programmer. Hence a great deal of detail in bytecode
instructions is technical, either in the sense of category 3
(where redundant type information is repeated for machine
convenience) or category 4 (where common patterns are
mapped to more compact alternative instructions).

As an illustration of consequences for language design,
contrast Figure 2 with Figure 3, which mimics the same
example in our proposed intermediate language LLJava. The
main matter of this paper is dedicated to exploration of the
design and its rationale.

1.3 Design Guidelines
The design of LLJava obeys the following requirements:

1. Must represent all capabilities of the JVM eventually,
except for arguably obscure or deprecated features;
May impose temporary restrictions on prototypes. The
limitations of the current prototype are stated at the
appropriate places below.

2. Must reuse or extrapolate Java high-level syntax where
adequate; should adapt JVMS syntax where it is spec-
ified; should not invent new syntax without necessity.
Syntactic choices are discussed and justified below.

3. Must abstract from holistic information – indexing
and tabulating of entities that inhibits incremental
program construction. Absence of holistic constraints,
compositionality, is an important practical requirement,
in particular when operating the API to construct code
automatically under program control.

4. Should abstract from ready information – local sources;
retrieved directly or by simple and specified deduction
procedures. This is most evident in our overloading
use of identical operators for analogous instructions,
in contrast to JVMS vernacular where they are disam-
biguated lexically; see §2.3.

2. THE LLJAVA LANGUAGE
This section specifies the syntax of the LLJava language.

We use EBNF operators |, (), [] and { } to abbreviate gram-
mar rules. The API of the corresponding object model is
implied, but too technical to be discussed here. The seman-
tics of translation to JVM bytecode is specified informally.

1 .class public HelloWorld
2 .super java/lang/Object
3 .method public static main :a ([Ljava/lang/String;)V
4 .limit stack 2ab 10c

5 .limitbc localsbc 1b 10c

6 getstatic java/lang/System /ab out Ljava/io/PrintStream;
7 ldc "Hello World!"
8 invokevirtual java/io/PrintStream /ab println(Ljava/lang/String;)V
9 return

10 .end method
11 .endb classb

a — http://jasmin.sourceforge.net/about.html
b — https://github.com/ymasory/programming-for-the-jvm/blob/master/examples/HelloWorld.j
c — https://github.com/Storyyeller/Krakatau/blob/master/examples/hello.j

Figure 2: Synoptic Hello World example in Jasmin (a), Oolong (b), Krakatau (c)

1 public synthetic class HelloWorld // NB no legal Java class (no constructor)
2 /*extends java.lang.Object*/ {
3 public static void main(java.lang.String[] /*args*/) {
4

5

6 get static java.io.PrintStream java.lang.System.out
7 load "Hello, World!"
8 invoke void /*java.io.PrintStream.*/println(java.lang.String)
9 return

10 }
11 }

Figure 3: Hello World example in LLJava

2.1 Types
The (pre-generic) type language of Java is adequate for

the type system of the JVM; no conceptual details are added,
except for the deprecated return-address type, which we do
not support. Therefore we use the familiar Java syntax for
all type matters. For the purpose of presentation in this
paper, we abstract from the technical details of mangling
and from the treatment of generic types, to be split into raw
types (descriptors) and parameterized types (signatures).

Type → RefType | PrimType

RefType → ClassType | Type []

ClassType → QualId

PrimType → boolean | char | byte | short
| int | long | float | double

Result → void | Type

All type information in LLJava is handled on a strict per-
class basis. Other classes are referenced by name only, no
implicit information concerning their subclass relationship
and their members is assumed or used. Thus the LLJava
tools operate in a completely modular fashion, at the price
that cross-class type assumptions must be explicit in the
LLJava program; see for instance §2.3.4 and §2.3.7. Top-level
class types are referenced by fully qualified identifiers in Java
source (dotted) notation.

2.2 Class Structure
For the aspects of bytecode that concern the JVM class

structure, that is everything outside of method body code,
we use almost pure Java source code syntax.

2.2.1 Access Flags and Attributes

Flag → public | private | . . .

For each JVMS constant ACC_XYZ there is a flag xyz.
Most of these are already valid Java keywords. In the single
case of a naming inconsistency, we prefer Java strictfp
over strict for JVMS ACC_STRICT. We have extrapolated
the set to contain also bridge, varargs, synthetic (see
Figure 3, line 1) and annotation. We abstract from the
technical details of numeric encoding as bits of a 16-bit
word. Note that several syntactic flags may share a common
numeric encoding, and are to be disambiguated by context.

We do not yet support explicit denotation of arbitrary
bytecode attributes (JVMS §4.7). Implicit attributes that
are compiled from other information are specified below.

2.2.2 Classes

ClassDef → {Flag} class QualId
[extends ClassType]
[implements ClassType {, ClassType}]
{ {Member} }

Flag constraints specified for classes in the JVMS apply.
The flag super, whose absence is deprecated, is always
implied. The superclass defaults to java.lang.Object if
omitted (see Figure 3, line 2). Note that the Java keywords
enum and interface are used as flags that precede, but do
not replace the keyword class.

2.2.3 Members

Member → Field

Field → {Flag} Type Id [= Literal] ;

http://jasmin.sourceforge.net/about.html
https://github.com/ymasory/programming-for-the-jvm/blob/master/examples/HelloWorld.j
https://github.com/Storyyeller/Krakatau/blob/master/examples/hello.j

Member → Method

Method → {Flag} Result MethodName
([Param {, Param}])
[throws ClassType {, ClassType}]
(Block | ;)

MethodName → Id | <init> | <clinit>
Param → Type [Id]

Flag constraints specified for methods in the JVMS apply.
A literal initializer specifies a ConstantValue attribute of
the field in bytecode. Parameters can be named for reference
in the method body; anonymous parameters can not be
accessed (see Figure 3, line 4). Types listed after throws
specify the Exceptions attribute of the method in bytecode.

We do not yet support inner classes or annotations.

2.3 Statements
This section follows the subsection structure of JVMS, §2.11.
Consequently, the syntax of method body code deviates from
the Java source code syntax in many ways, thus making
the essential details explicit. However, it also abbreviates
the verbose syntactic style of JVMS and javap significantly,
thus making technical details implicit.

Unlike JVM bytecode, where the code for each method is
a flat sequence of instructions, we allow instructions to be
organized into a hierarchical block structure. The reasons
are manifold: At the syntactic level, block structure has
better documentation value for complex code, and allows for
symbolic rather than numeric referencing of code positions
and intervals. At the object-model level, block structure
simplifies compositional code synthesis, and serves as the
internal model on which to normalize the control flow graph
into basic blocks; a necessary step for the static analysis that
recovers local type information which is abstracted from in
the instruction syntax presented below.

Block → { {Statement} }
Statement → Block | Instruction | Id :

CodeRef → goto Id | Block

CodeInterval → Id [- Id] | Block

Labels apply to the following statement, and serve to
reference code positions (such as branch targets) and intervals
(such as exception handler scopes). Intervals are specified by
a single label (ranges over the following instruction or block)
or a pair of labels (inclusive start and exclusive end).

2.3.1 Load and Store Instructions

Instruction → load Literal
| (load | store) VariableRef

VariableRef → this | Id

Instruction → Type Id ;

The load instruction subsumes the loading of literals from
the constant pool, as well as immediate and operand values,
such as in aconst_null or bipush, respectively. The type
of the loaded value is inferred trivially and hence implicit.
Local variables are declared with name and type; they are in
scope and must be unique from the point of declaration to
the end of the enclosing block. Local variables are referenced
by name and numbered implicitly. We foresee, but do not
yet support a notation for explicit allocation of numbered
local variable slots.

2.3.2 Arithmetic Instructions
Instruction → add | sub | neg | inc

| mul | div | rem
| shl | shr | ushr
| and | or | xor
| cmp [< | >]

Arithmetic operations are named as in JVMS, omitting
the initial letter that signifies operand type, which is instead
inferred from the typing of the operand stack. The NaN-
sensitive instructions dcmp<op> and fcmp<op> are written
graphically.

2.3.3 Type Conversion Instructions

Instruction → cast PrimType

All conversion operations such as l2f are subsumed under
a single cast instruction. The source type is inferred from
the typing of the operand stack; the target type is explicit
and in Java syntax. Note that cast is also used as an
abbreviation of the related JVM checkcast instruction;
see next subsection.

2.3.4 Object Creation and Manipulation
Instruction → new RefType {[_]}

| (get | put) [static] FieldRef
| (load | store) [] | length

Instruction → (instanceof | cast) RefType

FieldRef → Type [QualId .] Id

Regular and array objects are created uniformly using the
new instruction. A type suffix [_] denotes a dimension of
multiarray allocation. A single operation get denotes JVMS
getfield as the unmarked default, or can be qualified
with static; set is treated symmetrically. Array access
with load[] and store[] omits the element type, which
is inferred from the typing of the operand stack.

Note that the type of fields is explicit, because it cannot
be inferred in a modular way during separate compilation of
classes. By contrast, the owner type of the field declaration
can be omitted for non-static access; the unmarked default
is the class type of the reference on the operand stack.

2.3.5 Control Flow
Instruction → try CodeInterval {Handler}
Handler → catch ([ClassType]) CodeRef

Instruction → goto Id | return | throw

The content of the exception table of the Code attribute
of a method is specified in a decentral way using the try
operation. It refers to a code interval, which can either
contain inline code, as in Java source, or cross-reference a
range, as in JVMS bytecode. Analogously, handlers refer
either to inline code or to a branch target. The catch-all
handler is denoted as catch(). Note that neither try nor
catch corresponds to an actual JVM instruction.

Unconditional jumps are denoted with the explicit goto
instruction. The width of the address operand is inferred.
The return instruction omits the result type, which is in-
ferred from the method declaration. The same holds for
throw trivially.

We do not support the deprecated subroutine instructions
jsr and ret.

2.3.6 Conditionals

Instruction → switch { {Case} }
Case → (case Integer | default) :CodeRef

Both styles of JVMS switch instructions, table and lookup,
are denoted as switch. Cases either contain inline code or
a virtual goto cross-reference.

Instruction → if [!] (Condition) CodeRef

Condition → _ RelOp (_ | 0)
| _ EqOp null

RelOp → EqOp | < | <= | >= | >
EqOp → == | !=

Conditional branches are denoted with if as in Java source
code. The condition is written graphically, with the operand
or operands to be consumed from the stack specified by _
placeholders.

Conditional branching is different from try–catch and
switch in the sense that an inline code block as the target
CodeRef is not directly useful, as it would imply that control
is transferred to the next instruction (the beginning of the
block) unconditionally. Therefore we interpret the forms

if (c) { S } and if !(c) { S }

as shorthands for the patterns

if (c) goto A
goto B

A: S
B:

and

if (c) goto B

A: S
B:

respectively, where A, B are fresh labels. Note that on the
left hand side, the first goto is virtual, but the second one
is an actual instruction.

2.3.7 Method Access

Instruction → invoke [InvokeFlag] MethodRef

InvokeFlag → static | interface | super | private
| BootstrapRef

MethodRef → Result [QualId .] MethodName
([Type {, Type}])

The five invocation styles of the JVM are selected by
qualifiers: invokevirtual is the unmarked default as in
Java (see Figure 3, line 5); static and interface se-
lect the eponymous styles; both private and super select
invokespecial; a reference to a bootstrap method selects
invokedynamic, which is not yet supported.

As for fields, method references have explicit type signa-
tures. The owner class, if omitted, defaults to the class type
of the reference on the operand stack.

A method reference usually mentions the fully qualified
method name, with containing class and package. An unqual-
ified method name is implicitly completed with the operand
type as the containing class (see Figure 3, line 5).

2.3.8 Stack Manipulation

Instruction → nop | pop | dup

The number of operand stack slots to be manipulated is
inferred from the typing of the operand stack. We do not
(yet?) support “advanced” stack manipulation, such as pop2
for pairs of single-slot values, or dup_x.

2.3.9 Monitor Access

Instruction → enter | exit

3. ADVANCED EXAMPLES

3.1 Coding for the Human Reader/Writer
Consider a small but nontrivial Java program as depicted

in Figure 4, top. A LLJava source program that conveys
equivalent information at the JVM level, not only to the
machine but also to the human reader, is depicted in Figure 4,
bottom. It has been “compiled” from the former by invoking
javac followed by javap, and manual editing of the code
dump. We expect our forthcoming LLJava disassembler tool
to produce comparable output.

Note how the inline code variants of CodeRef and CodeIn-
terval, in lines 36 and 14, respectively, are used to reflect
the structured style of Java programming. Alternatively,
in a more bytecode-like format, one could remove the try–
catch() pattern, and insert the statement in line 42f. that
reflects the tabular style of Code attribute exception tables.

3.2 Language Explication by Translation
An effective way of communicating language semantics

in practical terms is by means of code generation schemes
for individual language constructs. This can only be made
adequately precise, if the target language has reasonable
compositionality. For instance, consider the Java conditional
operator (left), whose semantics can be explained precisely
and concisely by a compositional translation scheme to LL-
Java (right):

x ? y : z ;

{
x
if (_ == 0) goto A
y
goto B

A: z
B:
}

4. CONCLUSION

4.1 Summary
We have presented the design of LLJava, a language com-

prising a textual frontend and object model that expresses the
capabilities of the JVM at an intermediate level of structure
and abstraction that caters for the needs of code synthesizers
and human readers and writers of JVM bytecode alike.

4.2 Implementation Status
LLJava is implemented in Java and hence suitable for meta-

or macro-programming in any language hosted interoperably
on the JVM platform. The current prototype covers the
distinct processing steps unequally:

• The forward frontend (parser) for translating LLJava
source code to object model is operational.

• The forward backend (encoder) for translating LLJava
object model to bytecode (class file) is mostly opera-
tional. Subtle technicalities of the StackMapTable
attribute are a subject of current research; hence only
class file version 49.0 is fully supported. Support for

version 52.0, including verification by type checking
(JVMS §4.10.1), is work in progress.

• The backward frontend (unparser) for translating LL-
Java object model to source code is mostly operational.
Current research focuses on the theoretically minor but
practically important detail of finding a good graph rep-
resentation for control flow (Spanning tree of inline code
blocks versus labels and virtual goto cross-references).

• The backward backend (decoder) for translating class
files to LLJava object model is only partly operational.
Abstraction from technical details is the easy part. The
reconstruction of local variables (name, type and scope)
from access patterns and debugging information is an
interesting topic of future research. We are considering
a variant that is closer to the JVMS notion of local
variables as numbered, untyped stack slots.

4.3 Related Work
Basic related tools have been cited in the introduction.

There is also more up-to-date and technologically advanced
work that deserves mention:

The practical use of abstractions from the JVM bytecode
format has been demonstrated in great detail, in the context
of static analysis, by the Soot framework [9] which builds on
Jasmin. It offers a plethora of different, specialized intermedi-
ate representations (with whimsical names such as baf, grimp
or jimple) which have distinct abstraction strategies, shar-
ing a general paradigm shift to register code. However, our
proposed strategy from section 1.1, which emphasizes both
code synthesis and understanding for the JVM paradigm, is
not among them.

5. REFERENCES
[1] ASM. OW2 Consortium. 2015. url:

http://asm.ow2.org/.

[2] Byte Code Engineering Library (BCEL). Apache
Commons. 2014. url: https://commons.apache.org/
proper/commons-bcel/index.html.

[3] T. Downing and J. Meyer. JAVA Virtual Machine.
O’Reilly, 1996. isbn: 978-1565921948.

[4] J. Engel. Code for book Programming for the Java
Virtual Machine. GitHub, 2010. url: https:
//github.com/ymasory/programming-for-the-jvm/.

[5] J. Engel. Programming for the Java Virtual Machine.
Addison-Wesley, 1999. isbn: 978-0201309720.

[6] R. Grosse. Krakatau Bytecode Tools. GitHub, 2015. url:
https://github.com/Storyyeller/Krakatau/.

[7] T. Lindholm et al. The Java Virtual Machine
Specification. Java SE 7. JSR-000924. Oracle, 2013.

[8] J. Meyer and D. Reynaud. Jasmin Home Page. 2005.
url: http://jasmin.sourceforge.net/.

[9] R. Vallée-Rai et al. “Soot – a Java Bytecode
Optimization Framework”. In: Proc. CASCON. IBM,
1999.

1 class StreamCat {
2 boolean cat(java.io.InputStream in,
3 java.io.OutputStream out) {
4 byte[] buf = new byte[1024];
5 try {
6 int c;
7 while ((c = in.read(buf)) != -1)
8 out.write(buf, 0, c);
9 in.close();

10 out.close();
11 return true;
12 }
13 catch (java.io.IOException e) {
14 return false;
15 }
16 }
17 }

1 class StreamCat {
2 synthetic void <init>() { // implicit
3 load this
4 invoke super void <init>()
5 return
6 }
7

8 boolean cat(java.io.InputStream in,
9 java.io.OutputStream out) {

10 byte[] buf;
11 load 1024
12 new byte[]
13 store buf
14 T: try {
15 int c;
16 A: load in
17 load buf
18 invoke int read(byte[])
19 dup
20 store c
21 load -1
22 if (_ == _) goto B
23 load out
24 load buf
25 load 0
26 load c
27 invoke void write(byte[], int, int)
28 goto A
29 B: load in
30 invoke void close()
31 load out
32 invoke void close()
33 load 1 // true
34 return
35 }
36 C: catch (java.io.IOException) {
37 java.io.IOException e;
38 store e // funny, unused
39 load 0 // false
40 return
41 }
42 // try T /*-C*/
43 // catch (java.io.IOException) goto C
44 }
45 }

Figure 4: Stream catenation example, Java (top)
and LLJava (bottom)

http://asm.ow2.org/
https://commons.apache.org/proper/commons-bcel/index.html
https://commons.apache.org/proper/commons-bcel/index.html
https://github.com/ymasory/programming-for-the-jvm/
https://github.com/ymasory/programming-for-the-jvm/
https://github.com/Storyyeller/Krakatau/
http://jasmin.sourceforge.net/

	Introduction
	A Short Taxonomy of Bytecode Details
	Motivating Example
	Design Guidelines

	The LLJava Language
	Types
	Class Structure
	Access Flags and Attributes
	Classes
	Members

	Statements
	Load and Store Instructions
	Arithmetic Instructions
	Type Conversion Instructions
	Object Creation and Manipulation
	Control Flow
	Conditionals
	Method Access
	Stack Manipulation
	Monitor Access

	Advanced Examples
	Coding for the Human Reader/Writer
	Language Explication by Translation

	Conclusion
	Summary
	Implementation Status
	Related Work

	References

