
Optimization of Visitor Performance by
Reflection-Based Analysis

Markus Lepper a

Baltasar Trancón y Widemann b

a <semantics/> GmbH, Berlin
post@markuslepper.eu
b Universität Bayreuth

Baltasar.Trancon@uni-bayreuth.de

Abstract. Visitors are a well-known and powerful design pattern for
processing regular data structures and for combining declarative and im-
perative coding styles. The authors’ umod model generator creates Java
data models from a concise and algebraic notation. It is primarily used
to model intermediate representations of computer languages. The user
defines visitor code by extending skeleton classes, which are generated
according to traversal annotations in the model. Since the generated
code on its own executes the pure traversal and no semantic side-effects,
traversals are redundant unless some user-overridden method is even-
tually invoked. We present a reflection-based control flow analysis to
detect this situation and prune the traversal transparently. With a well-
stratified model, this may lead to substantial increase in performance.
Keywords: Visitor Pattern, Generative Programming, Control Flow
Analysis, Reflection

1 Introduction

1.1 Visitors

Visitors are a well-known and powerful design pattern for processing regular
data structures and for combining declarative and imperative coding styles [3].
The principle is as follows: For evaluating or transforming a certain instance of a
data model definition (existing in a certain hosting computer language, normally
an object-oriented one), there is some visitor class definition (in a strict sense
“external” to the model itself) which executes a traversal of the model instance.
This means that one or more methods (defined in this visitor class) with reserved
names are called recursively with all or some of the objects that make up the
elements of the model instance. The selection and sequential order of these
method incarnations follows the graph of the model instance, as defined and
realized by the references among the model elements.

There are many different variants of this principle, see Sect. 5. In particular,
different phases or transformation steps of the visiting process can be identified
by distinct method names. Commonly, the base visitor code performs only the

traversal, nothing more. Intended semantics (i.e. evaluation or transformation of
the model) are realized by deriving user-defined, specialized visitors from these
base classes, overriding the appropriate method definitions.

1.2 Optimization and Generative Programming

The base class(es) for the visitors are general-purpose traversal code, and do not
“know” which subgraphs of a given model instance really need to be visited for
a certain user-defined visitor. The optimization algorithm presented here prunes
all paths which surely do not reach any user-defined code, and consequently do
not contribute to the custom semantics of the visitor.

This principle can of course also be applied manually, and indeed often is,
e.g. by defining different base visitors for different traversal situations, or by
explicitly overriding descending code with a “no-operation”. But as the example
in Sect. 4.1 will show, the effects of these manipulations can possibly turn out
to be very surprising. Hence evolution, incremental definition and refactoring of
models may become impossible in a safe and efficient way.

In general, maintenance and evolution of models and the related visitor
classes can be made especially safe and efficient if the code for both is gen-
erated automatically from some concise model definition. The authors’ umod is a
tool for this kind of generative programming. It generates multiple base visitor
classes, each combining a certain kind of processing with a user-definable traver-
sal directive. In this context, the optimization is based on traversal directive
information extracted in the model compilation phase, combined with the col-
lection of method signatures specific to the user-defined, derived visitor classes,
extracted at class-initialization time via reflection.

2 The Algorithm in General

2.1 Prerequisites for the Algorithm

Our algorithm is suitable for all modeling frameworks where (1) the class collec-
tion for a certain model is finite and structured by references and inheritance,
(2) visitors with a certain semantics are defined by deriving from basic visitors
which realize mere traversal, and (3) the visiting sequence of the latter is defined
by a sequence of field selections per class. This applies to our own umod imple-
mentation, as described in the Sect. 3.2, to many other modeling frameworks,
and to XML document type definition languages, see Sect. 4.3.

The following subsections describe these prerequisites and the algorithm in
a semi-formal way. A survey of the employed notation is found appendix A.

2.2 Models

Let C0 be a finite set of predefined, external classes. Any certain model M defines
a finite set of classes CM , the model element classes, i.e. the classes of the objects

which make up the model instances. CM is disjoint from C0. There is a total
superclass function extends : CM → (CM ∪ C0), which must be free of cycles,
as usual.

Let ident be the (infinite) set of valid identifiers. Each class definition from
CM is assigned a finite set of field definitions by fieldDefs : CM → (ident→X X T).
Assume there is no shadowing of field names. Then the inheritance closure of
this map, denoted by fieldTypes, is defined recursively as

fieldTypes(c) =

{
{} if c ∈ C0
fieldDefs(c) ∪ fieldTypes(extends(c)) otherwise

The set of types T contains primitive predefined types and reference types to
external classes from C0, which are not relevant to our topic. But T of course also
includes simple references to one single instance of a certain model class from
CM , and also to aggregate types referring to more than one instance of more
than one model class, like “MAPT1 TO (T2*T3)”. The cycle from class definitions
via field types back to classes is closed by a relation containedClasses : T ↔ CM

which relates each type to all model classes appearing in its definition.
The set of all field definitions of a certain model M can be represented by

set of pairs FM : CM ↔ ident which is defined by simply forgetting the types of
the defined fields:

FM = fieldDefs # dom

Let QM be a certain model instance of the model M . In practice, this is
realized by a finite collection of objects of the underlying programming language
which complies to the structural declarations in M . By the actual values of all
those fields which point to instances of element classes, this collection describes
an arbitrarily shaped, labeled directed graph.

2.3 Visitors

A visitor is an imperative program construct which reads and modifies some
QM , enhanced by some arbitrary state space S. Transformations of S may include
local visitor fields updates, local side-effects, or even global side-effects like I/O.1

For our optimization it is required that visitors with semantic actions are derived
by method overriding from basic visitors. Each of these does not perform any
transformation of the state space, but realize only one certain traversal of the
model instance, i.e. the successive visiting of the model objects. Its behavior is
thus equivalent to a traversal selection, which is simply the selection of those
fields, the visitor will follow2, given as a subrelation Rn ⊆ FM . Let V G

n be the
basic visitor corresponding to Rn

1 In the following formulae, the modification of QM is restricted not to modify the
traversed fields, because this would make the mathematical modeling unnecessarily
complicated. But in theory, there is no real difference for the optimization algorithm.

2 Indeed, in most frameworks the user defines a sequential order of traversal, but we
can abstract from this for the purpose of this paper.

From V G
n , the user defines the semantic transformations by deriving one or

more user-defined visitors V U0
n , V U1

n , . . . by subclassing, i.e. method overriding.
Let the collection of all possible visitors of the model M be VM , and Vn all those
based on Rn.

transformationType = VM ×QM → (S 9 S)
match, descend : transformationType
getAction : VM → (CM → transformationType)
getClass : QM → CM

match (v, q) =
(
getAction(v)(getClass(q))

)
(v, q)

The purpose of simple visitors is to evaluate a state transformation (s 7→
s′) ∈ match(v, q). The transformation operation match(v, q) depends on the
lookup function getAction(v). This function delivers the transformation for a
certain visitor and a certain model element class.

In case of the basic visitors, this “transformation” is nothing more than a
complicated construction of the “identity”; for all c ∈ CM , we have

getAction(V G
n)(c) = descendc,n

The operation descendc,n of transformationType realizes the traversal of the
model, following all fields selected by Rn in class definitions c.

Let f1, f2, . . . , fk be the sequence of field identifiers from the traversal selec-
tion Rn, restricted to fieldDefs(c), i.e., to all fields appearing in a certain class
definition. Let get(q, f) be the semantic operation to look up the current value
of a certain field named f in a model element instance q. This value is of type
fieldTypes(getClass(q))f , and can be a direct reference to a model element, or
of some aggregate type like SET or REL, referring to model elements indirectly.
Let qf,1, qf,2, . . . , qf,m be all the model element instances which are referred to
in this value. Then the code for traversing the model is specified by

descendc,n(vn, q) = descendextends(c),n(vn, q)

match
(
vn, get(q, f1)

)
. . . # match

(
vn, get(q, fk)

)
where match

(
vn, get(q, f)

)
is just an abbreviation for the aggregated operation

match(vn, qf,1) # match(vn, qf,2) # . . . # match(vn, qf,k). This code constitutes a
first axis of inheritance, namely on the model’s element classes which serve as
arguments of the visitor methods.

Some important properties of the basic visitors’ code can directly be con-
cluded:

(1) If the selected traversal sequence applied to a certain model instance QM

leads to any cycles in the traversal path, then the top-level match will not
terminate.

(2) But if there are no cycles, it will terminate, because get() and getAction()
are total functions.

f
C

Fig. 1. Inheritance of Associations and Paths

(3) The state variable s : S is not changed at all, but simply passed through. So
each generated visitor V G

n does not perform any useful work on its own. See
the next section for the far-reaching optimization potential that arises from
this deceivingly simple property.

A user-defined visitor is specified as

V Um
n : Vn × (CM →X X transformationType)

The projection functions baseVisitor : V Um
n → Vn and actionDefs : V Um

n →
(CM →X X transformationType) return its first or second component, resp. Its pur-
pose is to re-define the transformations only on the model element classes to be
analyzed or modified. This is accomplished by completing the equation system
above by

getAction(V Um
n) = getAction

(
baseVisitor(V Um

n)
)
⊕ actionDefs(V Um

n)

This constitutes a second axis of inheritance, namely w.r.t. the hierarchy of
user-defined visitors, rooted at the basic visitors. Again, the inheritance relation
must be free of cycles, as usual.

Of course, in all implementations following this scheme, the code delivered
by actionDefs can make use of (“call”) the match code of the super-class visitor,
including the descend of the basic visitor.

2.4 Optimization

Due to observation (3) from the list above basic visitors never change the state,
only user-defined code does. Therefore it is sound to prune all paths on
which no user-defined code will ever be executed for any model in-
stance. So the optimization aims at eliminating the redundant calls to descend()
that will never reach any user-defined code, for a given Visitor V Um

n . It is nec-
essary to follow a certain field f , iff at least one class appears in the domain of
getAction(V Um

n), an instance of which is reachable through f , either directly or
indirectly.

To decide this question, we have to consider inheritance, as depicted in Fig. 1:
The field f as declared pointing to an instance qc of some model element class
c (any “association” in UML nomenclature) may point, in a certain model in-
stance, to an instance of any subclass of c. So, in a first step, all subclasses and
all superclasses must be tested whether they appear in the domain of actionDefs
of any V Um

n , which means that the corresponding action method is overridden by
the user. Furthermore, all relevant fields of all subclasses of c, and of all super-
classes of c must be included for extending the possible paths which start at f
and which have to be checked recursively for user code. Associations starting
from “siblings” and “nephews” of the declared target of f need not be consid-
ered, see the dotted lines in Fig. 1, since the declaration of the field as of type c
does not allow instances of those classes in any valid model instance.

In other words: As soon as the c ∈ CM are no longer seen as one level of
declaration, but interpreted as an extensional collection, i.e., as representatives
for all possible run-time objects q for which “q instanceof c” holds, then the
fields of all super- and subclasses must be included when constructing their
connectivity graph. This graph is the first basis for the further search for classes
subject to user code. It is calculated as

includeFieldsOf : CM ↔ CM

includeFieldsOf = extends∗ ∪ (extends∗)∼

Please note that the transitive and symmetric closure must be applied in
exactly this nesting order, for including all ancestors and descendants while
excluding siblings and nephews. We consider this the central “trick” of our al-
gorithm.

Independent from this relation is the question which class declarations are
related by association through fields. This is the second basis for the search
paths. It depends on the selected traversal Rn and is calculated by

decClassToDecClassn : CM ↔ CM

relevantFieldsn = FM ∩Rn

relevantTypesn =
{(

c,fieldTypes(c)(i)
) ∣∣ (c, i) ∈ relevantFieldsn

}
decClassToDecClassn = relevantTypes # containedClasses

where containedClasses(t) is simply the set of all model classes which appear in
a certain field type t, as defined in Sect. 2.2.

Composing these two axes, we obtain a finite adjacency relation which is
subject to standard SCC analysis.3 Each of the recognized strongly connected
components is represented simply by some natural number:

3 A strongly connected component (SCC) is a maximal nonempty subgraph in which
there is a path between each pair of members. In this context, the SCC analysis serves
as “data compression” to minimize the information which has to be carried over
from compile-time to run-time. It is orthogonal to the semantics of the optimization
because no two classes in one and the same SCC can behave differently w.r.t. the
algorithm. SCC analysis can be performed by standard algorithms like Tarjan’s or
Gabow’s, in linear time w.r.t. the number of edges.

connectedn : CM ↔ CM

connectedn = includeFieldsOf # decClassToDecClassn # includeFieldsOf
class2sccn : CM → N // partition
sccToSccn : N↔ N // quotient of the SCC analysis of connectedn

field2sccsn : FM ↔ N
field2sccsn = fieldTypes # containedClasses # class2sccn

Up to this point, the analysis uses only information from model class def-
initions and the traversal selections for the basic visitors (Rn). Its results are
identical for all semantic visitors based on the same Rn.

The next step of analysis requires the knowledge of the semantic visitors:

defedClasses : VM ↔ CM

defedClasses = (actionDefs # dom) ∪ (baseVisitor # defedClasses)
fieldFlags : VM ↔ FM

fieldFlags = defedClasses # class2scc # field2sccs∼n

So defedClasses(v) is the set of all model element classes which appear as an
argument to some action() method overwritten by the user, i.e. the set of those
an action method has been “defined for”. From this set, the set of all overwritten
SCCs is inferred, and from this the set of fields that need to be followed.The
traversal code contained in V G

n is instrumented with corresponding conditionals,
so that it only calls “match

(
V Um
n , get(. . . , f)

)
” if (V Um

n , f) ∈ fieldFlags.

3 Implementation

3.1 The meta tools Context

meta tools [15] is a collection of Java and XML-based tools for generative pro-
gramming, compiler generation, text processing etc. The basic philosophy of
all components is to relieve the programmer from tedious and error-prone rou-
tine by generating code from semantic models, but at the same time preserving
the freedom of arbitrary usage of the underlying programming language as far as
possible, for smooth integration with a wide range of tools and software develop-
ment processes. Hand-written code and generated code are not woven together,
but cooperate using the conventional language features for modularization, in
particular inheritance.

Typical components of meta tools are format (a framework for human-readable
text and code layout, enhancing Hughes’s pretty-printing combinators [5] sub-
stantially), metajava (seamlessly integrated counterpart of Java reflection for
generating source code), tdom (a strictly typed XML document object model
[16]), or option (compiler for command-line style and GUI style parametriza-
tion of applications). These tools have been successfully employed in a variety
of mid-scale projects.

3.2 The umod Tool

Among these tools the umod compiler is a central means for generating Java
code for general-purpose data models. This includes the classes for the model’s
elements, safe constructors and setter methods (primarily w.r.t. the illegal value
null), various methods for visualization and (de-)serialization and different
kinds of visitors. Fig. 2 shows a simple model definition source file4, present-
ing the most important features of the compiler:

– The syntax of the model definition is designed for compactness.
– Source code of model element classes is generated for

abstract class A extends java.lang.Object

class B1 extends A

class B2 extends A

class D extends java.lang.Object

– Class B1 has algebraic semantics: the equals() predicate and the corre-
sponding hashCode() are defined structurally by field-wise recursion, and
all instances are immutable—no set() methods will be generated, but in-
stead with() methods that create a modified copy.

– These classes have fields which point to different types of containers (maps,
relations, sequences), for which empty instances are created automatically,
and which have setter functions checking for illegal null values.

– The directive “C 0/0” following a field declaration generates constructor
code which initializes this field. Constructor code is inherited, and 0-ary
constructors are provided whenever appropriate.

3.3 umod Visitors

The basic visitors V G
n from Sect. 2.3 are also generated by the tool.

Visitor strategies are defined in the same source document with the model,
to ensure the consistency of necessary changes as required by certain software
development processes. e.g. rapid prototyping. and by later maintenance. In the
generated code however, model classes do not depend on visitor classes.

Visitor code generation is controlled by the “ VISITOR . . . ” statements, as in
Fig. 2. This syntax combines a traversal directive and a visitor kind.

The traversal directive n is constructed by annotating a field definition with
“ V n/. . . ”. It specifies the field references a visitor shall follow when traversing
the model, i.e. it defines the traversal selection Rn which is employed in definition
of the basic visitor’s behavior in Sec. 2.3.

Fig. 3 shows a simplified realization of the visitor class Simple, as defined
in the model. (The actual code generated by umod looks slightly different.) The
visitor kind distinguishes between simple visitors, multi-phase visitors, rewrit-
ers, co-rewriters (which can deal with cycles), printers, Swing tree builders for
visualization, XML encoders, etc. Only basic visitors are generated by the tool.

4 Please ignore the graying-out of two text lines until reading Sect. 4.1.

The subsequent definition of the semantic visitors (V Um
n) is done on source-text

level, using the normal Java inheritance techniques, and tools and processes of
the user’s choice.

3.4 Implementation Of The Visitor Optimization Algorithm

All analysis up to the calculation of class2sccn and sccToSccn is done at model
code-generation time. Every model class is part of an SCC, and every field is
linked to the SCC that constitutes the root of the subgraph of classes which can
be potentially reached by following the actual value of this field. Using the “ops”
libraries of meta tools for high-level algebraic programming, the specifications
from Sect. 2.4 are implemented almost literally. The results are encoded into
appropriate static final data structures, and passed over to the Java compiler,
and thus to execution time.

At class loading the analysis is completed, since the calculation of defedClasses
and fieldFlags requires the knowledge of the user-defined semantic visitor code.
In our framework, this code can come from any source, could even be generated
on the fly, therefore the byte code must be analyzed. Since the interaction be-
tween generated and user-defined code is restricted to method overriding, reflec-
tion is sufficient. When the first instance of the visitor class V Um

n is constructed,
its Java class object is queried via reflection for all methods with a matching sig-
nature. Whenever such a method is recognized as defined at an inheritance level
lower than that of the generated basic visitor, then it is classified as user-defined
and recorded in defedClasses. From this set, the set of all overwritten SCCs is
inferred, and from this the set of fields that need to be followed.

The results are stored in a central cache, and retrieved on each subsequent
constructor call. The values of these sets vary with every user defined visitor
class. Since these are written independently from the tool, this little overhead of
copying constant bitset values from a dynamic storage is required.

4 Examples

4.1 Simple Example, Continued

Returning to the toy model definition presented in Fig. 2, assume there is a user-
defined visitor V U1

n which only overrides the method for action(D), and it has
to be decided whether a call to match(A.get a1()) is necessary. Note that this
call could be rather expensive, since a1 can contain references to an unknown
number of B1 objects. The relevant associations are depicted in Fig. 4.

If n = 0, meaning that the visitor is derived from V G
0 , the base visitor

generated from traversal code 0, then this match does not need to be called:
The only way to reach an object of class D is via B2.b2, but all associations
starting from any B1, namely B1.b1b and A.a1, stay in the collection of B1

objects. This is different when deriving from V G
1 and V G

2 , for different reasons:
V Um
1 follows additionally field B1.b1 of type A. The actual value of this field

could be of type B2, thus action(D) can be reached.

MODEL M =

VISITOR 0 Simple ;

VISITOR 1 Rewrite IS REWRITER ;

VISITOR 2 Visitor2 ;

TOPLEVEL CLASS

A ABSTRACT

a1 int <-> B1 ! V 0/0 1/0 2/0 ;

a2 A ! C 0/0 V 2/1 ;

| B1 ALGEBRAIC

b1 OPT A ! V 1/0 ;

b1b SEQ B1 ! V 0/0 ;

| B2

b2 int -> D ! V 0/0 1/0 2/0 ;

b2b OPT B2 ! V 0/1 1/1 ;

D

d int = "17"

END MODEL

Fig. 2. A simple example model definition

public class Simple {

public void match(Object x) {

if (x instanceof A)

match((A)x);

else if (x instanceof D)

match((D)x);

else

action_foreignObject(x);

}

public void match(A x) {

if (x instanceof B1)

match((B1)x);

match((B2)x); // closed world

}

public void match(B1 x) {

action(x);

}

public void match(B2 x) {

action(x);

}

public void match(D x) {

action(x);

}

protected void action(A x) {

for (B1 sub : x.a1.range())

match(sub);

match(x.a2);

}

protected void action(B1 x) {

action((A)x);

for (B1 sub : x.b1b)

match(sub);

}

protected void action(B2 x) {

action((A)x);

for (D sub : x.b2.values())

match(sub);

if (x.b2b != null)

match(x.b2b);

}

protected void action(D x) {}

//no call of match() for "int"

protected void

action_foreignObject(Object x)

{}

}//class Simple

Fig. 3. Generated code for a simple visitor according to traversal directive “V 0/..”.

A

B2

B1

b1b

a1

b1

a2

b2

b2b

V2V1all ((arbitrary, no effect!)V0,1,2)

D

associations contained in traversal selections:

Fig. 4. The associations in the example model

The consequence of adding A.a2 with traversal code 2 may seem somehow
surprising at a first glance: While the “loops” at the “leaf classes” B1.b1b and
B2.b2b are totally irrelevant for the analysis (indicated by the graying-out of
the source text lines and the dotted arrows in the graphic!), a loop at a non-
leaf class is not : of course, the current visited object is already an instance
of A (remember, we are discussing whether match(A.get a1()) needs to be
executed). But this new association A.a1 does not only add some redundant
self-reference, but also a way to reach a B2 from any instance of B1, which
changes the graph of possible paths dramatically. This illustrates that applying
this kind of optimization manually would be rather error-prone, esp. when later
maintenance requires adaption of the model’s structure.

4.2 A Real-World Application

We have applied the optimization to a real-world programming language com-
piler created with extensive use of the meta tools: The Tofu language is a pure
functional language with a powerful type system based on the calculus of con-
structions. It features polymorphism, type-level functions and dependent types,
but is still total : All well-typed functions terminate for all inputs. Tofu is in-
tended as executable semantics, and hence prototype implementation and test
oracle, for mathematically rigorous software documentation (cf. [17]). The Tofu
compiler uses a generated parser and a umod-generated semantical model of the
language. All compiler passes are implemented as visitor-style transformations
on the model (mostly of the rewriter kind). The compiler translates Tofu to a
low-level, untyped applicative intermediate representation (functional “assembly
language”) and eventually to Java using the facilities of metajava.

The structure of the internal umod-model of Tofu makes it a natural test case
for visitor optimization: The model is, in its current version, strictly 2-stratified,
with references from a namespace level (modules, declarations, definitions) to
an expression level (terms, function abstractions, types), but not vice versa. In

C
o
n
te

x
t
C

h
e
c
k

T
y
p
e
 C

h
e
c
k

T
ra

n
s
la

ti
o
n

Optimized

Plain

Compiling Tofu Base Library

Time (s)

0.00 0.05 0.10 0.15

Fig. 5. Run times for major phases of the Tofu compiler, compiling the Tofu base
library. Shown figures are means of real durations (System.nanoTime) of 100 runs after
a warm-up phase of 10 runs. Relative improvement is approx. 9% (Context Check),
14% (Type Check) and 21% (Translation), resp. (14% cumulatively). A total of 5639
subtrees are pruned per run.

total there are 33 classes with 44 declared fields (not counting inheritance) in
the model.

Fig. 5 shows some benchmark results. They were obtained on an Athlon 64
X2 5000 dual-core machine and the Sun JDK 1.6.0 13 client VM with 200MiB
of heap space. The execution times of the following phases have been measured:
Context Check – removes syntactic sugar, resolves references, establishes scoping
of variables. Type Check – verifies type consistency (including termination) of
all function definitions, infers implicit type parameters. Translation – performs
type erasure, constant folding, inlining and lambda lifting; generates low-level
(LISP-like) functional code.

All of these rely heavily on the visitor pattern, invoking 21 user-defined visitor
classes. Invoked on the Tofu base library (757 lines of code), a total of 3625
visitors are instantiated. The measurements show consistent improvement of
the optimized version of the generated visitor code over the plain version of
approximately 14%. The overhead of a dynamic check of fieldFlags for each
field value is included in the calculation. The check allows to prune the traversal
of a subtree of unknown size in 5693 cases. The additional overhead of the
execution-time phase of our algorithm is difficult to measure exactly because of
its interference with class loading, but can be estimated as at most 4 ms, i.e. 5%
of execution time.

The measurements have been obtained as the real execution times (as re-
ported by successive calls to System.nanoTime()) of the respective compiler
phase. To reduce the impact of system load and random effects, the compila-
tion has been repeated K + N times, interspersed with calls to System.gc().

The first K = 10 runs served as a warm-up phase for the class loader and JIT
compiler. The following N = 100 runs were averaged.

We conclude that the achieved gain in efficiency is satisfactory. Most of the
pruned subtrees are subgraphs that represent Tofu expressions, traversed by vis-
itors that only provide custom actions for the namespace level of Tofu. While
the same efficiency (and even more, considering the overhead of dynamic prun-
ing checks) can be achieved by user-controlled explicit pruning, the automatic
optimization is superior from the software-engineering perspective, because the
stratification properties of the Tofu model could be altered, or ruined entirely,
even by small changes (cf. “A.a2” in Fig. 4). For a model of realistic size, the
transparency provided by automatic visitor optimization is a valuable feature.

4.3 Possible Applications on Other Stratified Data

The amount of stratification and unidirectional references in a model is an in-
dicator for the expected gain from applying our algorithm. Our analysis of two
wide-spread XML models has shown significant potential. We have recorded the
number of SCCs and the maximal path length in the SCC graph (generation
count), which serve as measures of stratification in relation to the number of
elements.

Document Type Path Length SCCs Elements

XHMTL 1.0 6 22 77

DocBook 5.0 18 77 362

5 Related Work

The related work we have found is either rather narrow or rather broad, depend-
ing on the criterion: There is only one work dealing with automated pruning
([8]) and few dealing with pruning by programming. On the other hand there
are many approaches to automated visitor code generation, very different and
hardly comparable. We decided to give here the broader view, because all these
papers contribute valuable aspects.

The “visitor pattern” itself appears to have risen out of folklore, with [3]
being the first publication to use this term explicitly. In [1] there is a more
recent and more exact description.

In [10] “Walkabout” is presented, a versatile extension of the visitor pattern,
avoiding the need of the “closed-world assumption”. It uses Java reflection for
run-time inquiry and even for method invocation, being substantially less efficient
than generated code. We did not find practical applications. A combinator library
for visitors is presented in [14]. It allows, among other useful things, explicit and
hand-coded pruning of subtrees. It contains combinators like “Choice(v1,v2) —
Try v1. If it fails, try v2”. This catalog could be a valuable suggestion for further
evolution of the umod output. A more recent paper on “strategic programming”
is [6], which discusses the need of a language-independent traversal control very

thoroughly. Automated pruning is not discussed, but could be integrated into
this context in a rather natural way.

The only paper we found which addresses (among more general questions
of traversal control) a very similar topic, namely automated pruning of visit-
ing sequences directed by constraints, is [8]. Its context is the Demeter system
[7], which translates graph models into Java code and other programming lan-
guages. It resembles our umod approach w.r.t. compactness and algebraic flavor.
Belonging to aspect-oriented programming, this approach is independent from a
particular language as back-end and includes proprietary language constructs for
visiting strategies and algorithms. Our approach leaves this intentionally to Java
constructs, while supporting also non-syntactic data types like sets and maps,
with their Java-specific semantics.

Based again on a standard programming language is the approach in [4]: an
architecture based on C++ template instantiations and the “standard template
library” (STL) for re-using visitor code for translating domain specific mod-
els into different back-ends. This meets our approach w.r.t. re-using traversal
code and separating phases and tasks. The issue of automated pruning is not
addressed there.

The approaches in [9] and in [13] are even more similar to ours, since Java
code is generated. The main difference is that umod visitors are generated as
part of generated Java source, but in [9] the visitors are generated to operate
with independently created Java classes. Consequently, the visitor description
language is much more complicated and deals with details (e.g. calculation re-
sults and method signatures) which our tool leaves to the subsequent “manual”
refinement process, using plain Java language means.

Another ambitious visitor code generation system is presented in [13], to-
gether with formal semantics and corresponding proofs. Again, we do less (w.r.t.
verification and provable correctness), but allow more (namely arbitrary trans-
formations in the course of S 9 S, e.g. I/O). In [11], all possible execution
sequences of a certain visitor are translated into a context-free grammar. In a
second step, this approach would also allow automated pruning, but this is not
addressed in the paper. The approach in [2] resembles our umod code generation,
but is again more versatile on the back-end (not focused on a single programming
language) and less versatile on the front-end (models must be “trees”). Whether
the visitors perform any optimization is not clear from the documentation.

As a conclusion, our approach seems to take a middle road between the
others: One one hand, it has exact algebraic specification of the data model,
and computability of certain model properties needed for the optimization. On
the other hand, it is not a self-contained language for the complete definition
of models and their transformations, but a pragmatic solution for generating
“smart boilerplate” model code in Java, leaving open all the possibilities of the
language the programmer is accustomed to use freely.

Acknowledgments

Many thanks to the anonymous reviewers for valuable hints. These have helped
to improve the text substantially.

References

1. P. Buchlovsky and H. Thielecke. “A Type-theoretic Reconstruction of the Visitor
Pattern”. In: Mathematical Foundations of Programming Semantics (MFPS’05),
vol. 155. ENTCS. Elsevier, 2006.

2. A. Demakov. TreeDL, 2007. url: http://treedl.org/.
3. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison Wesley, 1995.
4. J. H. Hill and A. Gokhale. Using Generative Programming to Enhance Reuse in

Visitor Pattern-based DSML Model Interpreters. Tech. rep. IEEE Trans. SP, 2007.
5. J. Hughes. “The Design of a Pretty-printing Library”. In: Advanced Functional

Programming. Springer, 1995, pp. 53–96.
6. R. Lämmel, E. Visser, and J. Visser. The Essence of Strategic Programming. 2002.
7. K. Lieberherr. Demeter: Aspect-Oriented Software Development, url: http://www.

ccs.neu.edu/research/demeter/.
8. K. Lieberherr, B. Patt-Shamir, and D. Orleans. “Traversals of object structures:

Specification and Efficient Implementation”. In: ACM Trans. Program. Lang. Syst.
26.2 (2004), pp. 370–412.

9. J. Ovlinger and M. Wand. “A language for specifying recursive traversals of object
structures”. In: ACM SIGPLAN Notices 34 (10 1999).

10. J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern. 1997.
11. M. Schordan. “The Language of the Visitor Design Pattern”. In: Journal of Uni-

versal Computer Science 12.7 (2006), pp. 849–867.
12. J. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1988. url: http:

//spivey.oriel.ox.ac.uk/~mike/zrm/.
13. T. van Drunen and J. Palsberg. “Visitor-oriented programming”. In: Proc. FOOL-

11. 2004.
14. J. Visser. “Visitor Combination and Traversal Control”. In: Proc. OOPSLA 2001.

ACM Press, 2001, pp. 270–282.
15. B. Trancón y Widemann and M. Lepper. The BandM Meta-Tools User Documen-

tation. 2010. url: http://bandm.eu/metatools/docs/usage/.
16. B. Trancón y Widemann, M. Lepper, and J. Wieland. “Automatic Construction of

XML-based Tools seen as Meta-programming”. In: Automated Software Engineer-
ing 10.1 (2003), pp. 23–38.

17. B. Trancón y Widemann and D. L. Parnas. “Tabular Expressions and Total Func-
tional Programming”. In: IFL 2007. Revised Selected Papers. Springer, 2008, pp.
219–236.

A Mathematical Notation

The employed mathematical notation is fairly standard, inspired by the Z notation
[12]. The following table lists some details:

A→ B The type of the total functions from A to B.
A 9 B The type of the partial functions from A to B.
A→X X B The type of the partial and finite functions from A to B.
A↔ B The type of the relations from A to B.
ran a, dom a Range and domain of a function or relation.
r∼ The inverse of a relation
r∗ The reflexive-transitive closure of a relation
r # s The composition of two relations: the smallest relation s.t.

a r b ∧ b s c⇒ a (r # s) c
r ⊕ s Overriding of function or relation r by s.

Pairs from r are shadowed by pairs from s:
r ⊕ s =

(
r \ (dom s× ran r)

)
∪ s

Functions are considered as special relations, i.e. sets of pairs, like in “f ∪ g”.

