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Abstract
The field of declarative data-stream programming (discrete time,
clocked synchronous, compositional, data-centric) is divided be-
tween the visual data-flow graph paradigm favored by domain ex-
perts, the functional reactive paradigm favored by academics, and
the synchronous paradigm favored by developers of low-level sys-
tems. Each approach has its particular theoretical and practical mer-
its and target audience. The programming language SIG has been
designed to unify the underlying paradigms in a novel way. The nat-
ural expressivity of visual approaches is combined with the support
for concise pattern-based symbolic computation of functional pro-
gramming, and the rigorous, elementary semantical foundation of
synchronous approaches. Here we demonstrate the current state of
implementation of the SIG system by means of example programs
that realize typical components of digital sound synthesis.
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1. Context: The Total Functional Data-Flow
Language SIG

For many computations a static mapping from input to output val-
ues is not sufficient; outputs need to change over time according to
corresponding changes in inputs and/or internal state. Applications
range from reactive systems, in a context with input devices, sen-
sors or communication channels, to processors and generators of
time-series data, such as audio signals or dynamic simulations in
numerous branches of science, engineering and digital arts.

In [2] we have discussed current programming approaches to
such systems, their respective merits and shortcomings, and pre-
sented our design of a core programming language, SIG, that in-
stantiates a novel approach and covers a restricted but pervasive
and practically important class of time-dependent computations.
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We assume computations to occur discretely in time, driven by
global clocks with known rates. All computational components are
synchronized unless explicitly decoupled by resampling connec-
tors. All data flow is conceptually instantaneous unless explicitly
delayed. Instantaneous data flow must be cycle-free. Except for
explicitly delayed data, there is no persistent state. Computations
must not diverge or abort spontaneously. In summary, programs de-
note online (causal, potentially real-time) total functions on infinite
data streams.

1.1 Elementwise Computation, Delay and State
As usual in the data-flow style, computations are specified as-if per
element, with no explicit reference to data streams as wholes. In-
deed most atomic computational components are stateless, with the
notable exception of delay components, of which we consider only
a single-step delay δ for simplicity reasons. Complex components
with many kinds of interesting and practically relevant stateful be-
havior can be constructed from these.

The SIG front-end language, where state is implicit in delay,
is translated to an intermediate representation (IR), where state is
explicit. The atomic components of this IR are modeled (after the
style of the schema notation in the Z formal method) as quaternary
relations. A single step of a computation that globally takes a
stream of As to a stream of Bs is represented by a relation of type
S ×A ↔ B × S, where the two occurrences of S denote pre- and
post-state, respectively (see Figure 1).

Stream semantics are obtained by infinite replication of a step,
with the post-state of each instance equaling the pre-state of the
next. The state space S and the initial state s0 ∈ S are inferred
inductively over the syntactic structure, from the use of individual
delay components. Note that each delay component is a trivial
relation with S = A = B, and a = s′ and s = b.

The IR is in static single-assignment (SSA) form, state of the art
in low-level compilers, and retains the high degree of fine-grained
parallelism typical of data flow languages, where operations are
only partially and implicitly sequenced by data dependency. Con-
trol flow in the functional style of pattern matching on algebraic
data types is integrated orthogonally by creative abuse of the data-
flow merging φ-nodes of SSA. The combination of patterns and
delayed feedback loops gives an effective and convenient expres-
sion of stream transducer automata.
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Figure 1. Stateful single-step computation model
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Figure 2. ADSR hybrid automaton specification
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Figure 3. Harmonic oscillator data-flow graph

2. Demonstration: Sound Synthesis Components
We demonstrate the current state of implementation of the SIG sys-
tem by means of example programs that realize typical components
of digital sound synthesis.

2.1 The SIG Programming System
A prototype compiler and runtime environment for the SIG lan-
guage has been implemented in Java. It features a front end for tex-
tual programming (integration with visual editing is planned for fu-
ture work), and translation to the SSA-based IR, as described in [2].

The back end as currently implemented emphasizes immediate
execution, with the compiler and runtime environment sharing a
single Java virtual machine (JVM), in order to support dynamic in-
teractive programming without recurring to external tools. The IR
is translated to threaded code for a light-weight interpretation layer
on top of the JVM, and can optionally be translated to JVM byte-
code for more direct execution at the expense of instrumentation.

Both variants are designed for good interoperability with the
JVM just-in-time compiler, and hence lead to binary code with de-
cent performance characteristics. The demonstration will show SIG
components running in a real-time setting with online performance
monitoring.

2.2 Sound Applications
The application domain of digital sound synthesis has several re-
quirements that can serve to highlight and evaluate the features of
SIG particularly well:

• Synthesizers can be run both offline and in (soft) real time.
• Components running at different rates (typically audio and con-

trol rate) need to interact.
• Standard algorithms make heavy use of delayed interference

and delayed feedback, as well as essentially discrete, symbolic
data types; see below.

data State = { A | D | S | R }

def adsr = [ g : bool -> x’ : real
var p, p’ : State; x : real
where
x = x’ ; 0 -- (";" is delay with initial
p = p’ ; R -- value, aka "followed-by")
x’ = case p of {
A -> min(1, x + a(x)) -- (guards against
D -> max(s, x - d(x)) -- overshooting
S -> x
R -> min(0, x - r(x)) -- by discretization)

}
p’ = case p of {
R if gate -> A
A if gate && out’ >= 1.0 -> D
D if gate && out’ <= s -> S
else -- no implicit first-fit
_ if !gate -> R
else
_ -> p

}
]

Figure 4. ADSR SIG program

def osci = [ -> x : real
var y : real
where
y = A ; x
x = (C * y) - (B ; y)

]

Figure 5. Harmonic oscillator SIG program

• The human ear is a merciless testing device that can easily de-
tect many computational deficiencies, such as phase errors and
off-by-one bugs in loops resulting from careless discretization.

• Users are often artists without formal training in programming
languages; they require a simple and safe approach to program
semantics, and can benefit from functional typing discipline.

2.3 Example Components
A typical example of a control-rate sound component with sym-

bolic state, delayed feedback and control flow (transitions), namely
the ADSR envelope model, is shown in Figures 2/4 as a continuous-
time hybrid automaton and SIG program, respectively. (Shape pa-
rameter functions a, d, r and constant s are omitted.) Contrast the
syntactic and semantic treatment of time and control in functional
reactive programming, e.g. in [1].

A complementary example of an audio-rate sound component
with purely numerical data and delayed interference, namely a har-
monic oscillator (sine wave generator) model, is shown in Fig-
ures 3/5 as a visual data-flow graph and SIG program, respectively.
(Phase, amplitude and frequency parameters A,B,C are omitted.)

For demonstration purposes, the generic SIG runtime environ-
ment has been extended with a real-time control- and audio-rate
scheduler, sound output and GUI input controls. The details of
which sound synthesis components will be demonstrated in which
configuration depends on the state of the implementation, which is
currently very much in progress, and will be decided on short term.
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