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Chance!

By Classical Numismatic Group, Inc. http://www.cngcoins.com, CC BY-SA 3.0

Toss a denarius coin. Determine whether it shows a head or a ship.

BTW, ML ALEA IACTA EST 2 /23

https://commons.wikimedia.org/w/index.php?curid=2869516


Chance!

Roll seven ten-sided dice.
For every die that shows a ten, roll another
and add it to the pool.
Count the number of dice that show values
greater than five. Compare to the number of
dice that show a one.
If the difference is positive, you win by that
amount.
If the difference is zero or negative, you lose.
If there are no values greater than five but
there is a one, you lose badly.
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Background

Random experiments have a history of millenia in human culture.
toss coins, cast bones, roll dice, draw from a bag / urn / card deck, . . .

Stochastics as a discipline has evolved from their study.

Random experiments feature prominently
in the teaching of stochastics,
in simulations,
in games.
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Goals

Declarative domain-specific language for random experiments
First-order functional programming + randomness

Rich statistical datatypes, simple control flow
Clean semantics

Easy and intuitive to use for non-expert programmers
Amenable to static stochastic analysis — Turing-incomplete
Pseudo-random simulator & game assistant
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Probability Distributions

Consider only rational, discrete, finite distributions.

Stochastically effective: Calculate the distribution of any random
variable that is a computable function.
Strong algebraic structure: Commutative Monad

Moggi-style denotational semantics for a term language

Closed under finitary computations.
Not closed under unbounded iteration / recursion:

Repeat rolling a die until it shows a six.
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Data

Exact numbers: rational, unbounded precision
with IEEE754-style NaN
subtypes: integer, natural, boolean

Collections: lists, sets, bags
bags relieve combinatorial pressure
bulk operations map, filter, reduce

Records
field names or 1 . . .n for tuples

Tagged Data
like ADT constructors, but free without type declaration
tagged unit tuple = enum constant
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Syntax

Overall appearance: elementary mathematics
graphical (Unicode) operators; no keywords
strong but implicit type system

Arithmetics
a^2 + b^2 ≥ c^2

Local variables
s := (a + b + c) / 2; (s − a) * (s − b)

Functions & distributions
max(gcd(a, b), 17) k := ~uniform{1, 2, 3, 4}

distributions are not referentially transparent:
n := ~uniform{+1, −1}; n − n
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Collections

Unified treatment of lists, sets and bags
homogeneous elements
each with a distinguished shape of brackets

[1, 2, 3] {1, 2, 3} ⟨1, 2, 3⟩

Bulk operations map, filter, reduce
without functions-as-values
map & filter by comprehensions (Haskell-style +)
[ n^2 | n ← L ] { x ← S | x ≥ 0 }

drawing with or without replacement
{ x + y | x ← S; y ← S } { x + y | {x, y} ← S }

reduce by semigroup operations
min[a, b, c, d] (+)⟨ x ≥ 0 | x ← B ⟩
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Records and Tuples

Ad-hoc heterogeneous aggregation
no type declaration required

Positional and/or symbolic field selectors (ML style tuples)
(x: 1, y: 2) (3, 4, 5) p.x t.#1

Patterns in assignments
(a, b, c) := (3, 4, 5)
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Tagged Values and Case Distinctions

Ad-hoc disjoint union
no type declaration required

Symbolic tags, payload optional (enum)
@just(42) @nothing

Case distinction with elementary pattern matching
x ? { @just(n) → n; @nothing → 0 }

also for integers (C-style switch)
n ? { 0 → @none; 1, 2, 3 → @few; _ → @many }

special case: booleans
a ? b : c a ? { 1 → b; 0 → c }
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Types

Untyped data universe

Lattice of types
structural subtyping for collections, products, sums
simple set-theoretic (extensional) semantics

Flexible overloading for library functions
homomorphic overloading for arithmetics
parametric overloading for collections
semigroup overloading for reduce

Decidable, bottom-up inference of principal types
Sanity checks

function argument types
switch reachability/completeness
reduce laws
. . .
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Function Overloading
Each function has a single partial definition on the untyped universe.

overloading concerns only total restrictions (type signatures)
consequence: / and // (div) must be distinct functions

A function may admit several valid type signatures (polymorphism):
ad-hoc finitely many

parametric infinitely many

Compactness: for a particular argument of type T ′, only finitely many
signatures Ti → Ui are relevant

cover T ′ with ⨅Ti ⟹ result is U′
= ⨅Ui

Example:

max ∶ Z × N → N
max ∶ N × Z → N
max ∶ Z × Z → Z
max ∶ Q ×Q → Q

max(3,4) ∶ N ⊓ N ⊓ Z ⊓Q
max(3,−4) ∶ N ⊓ Z ⊓Q

max(−3,−4) ∶ Z ⊓Q
max(22/7,−4) ∶ Q
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Semigroups

Apply a binary function/operator to a collection (instead of a pair of
elements).
Idea: reduce
(+)[a, b, c, d] a + b + c + d

Simplified semantics:
no foldl/foldr distinction
no explicit empty case

Rely on algebraic (semigroup) properties:
associative for all collections

commutative for sets & bags
monoid for possibly empty collections

Known magically for library functions; currently no mechanism for
user definitions.
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Evaluation

Big-step evaluation semantics

Three flavors: deterministic, stochastic, pseudo-random
choice of computational monad
fun fact: in OO implementation, pseudo-random is almost for free

Strong normalization for well-typed programs
evaluation succeeds for well-typed expressions of nonempty types
results in / distributed-over the type inhabitants
challenge: pseudo-random evaluation & the law of large numbers
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Example #1

coin := ~uniform{@head, @ship}
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Example #2

dice1 := ⟨~uniform{1..10} | _ ← ⟨1..7⟩ ⟩;
tens := ⟨d ← dice1 | d = 10⟩;
dice2 := ⟨~uniform{1..10} | _ ← tens⟩;
dice := dice1 + dice2;
nhigh := (+)⟨d > 5 | d ← dice⟩;
nones := (+)⟨d = 1 | d ← dice⟩;
diff := nhigh − nones;

verdict := diff > 0
? @succeed(diff)
: (nhigh = 0 ∧ nones > 0 ? @botch

: @fail)

Roll seven ten-sided dice.
For every die that shows a ten,
roll another
and add it to the pool.
Count the number > 5.
Compare to the number of
dice that show 1.

If the difference is positive,
you win by that amount.
If there are no values > 5 but
there is a 1, you lose badly.
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Yahtzee Scoring

dice := ⟨ ~uniform{1 .. 6} | _ ← ⟨1 .. 5⟩ ⟩;
(
Dice: dice,
Aces: (+)⟨ d ← dice | d = 1 ⟩,
Twos: (+)⟨ d ← dice | d = 2 ⟩,
Threes: (+)⟨ d ← dice | d = 3 ⟩,
Fours: (+)⟨ d ← dice | d = 4 ⟩,
Fives: (+)⟨ d ← dice | d = 5 ⟩,
Sixes: (+)⟨ d ← dice | d = 6 ⟩,
Chance: (+)(dice),
ThreeofaKind: (+)(dice) * (max(mults(dice)) ≥ 3),
FourofaKind: (+)(dice) * (max(mults(dice)) ≥ 4),
FullHouse: 25 * (mults(dice) = ⟨2, 3⟩),
SmallStraight: 30 * (dice ≥ ⟨1 .. 4⟩ ∨ dice ≥ ⟨2 .. 5⟩ ∨ dice ≥ ⟨3 .. 6⟩),
LargeStraight: 40 * (dice ≥ ⟨1 .. 5⟩ ∨ dice ≥ ⟨2 .. 6⟩),
Yahtzee: 50 * (mults(dice) = ⟨5⟩)

)
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math.stackexchange.org #5019285

How can I tackle this probability question on deck of cards with
replacement?

Posted 2025-01-04
Formalized in ALEA 2025-01-04
Findings:

development time ∼ 20min
17LoC, no corrections necessary
complete formal model no longer than high-level English text
analysis result agrees with top answer
already indicates that user-defined functions are missing
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Implementation

Java application (∼ 5kLoC)
Lexer & parser: combinator libraries
Semantic analysis: visitor pattern

DEMO
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Summary

Elementary functional programming with randomness
distributions as “anonymous random variables”
statistic datatypes & operations

Declarative, but not referentially transparent
compare functional–logic programming
strong implicit typing catches errors, without getting in the way

Language design emulates traditional mathematics
low threshold for non-programmers

Random experiment idioms facilitated by special features:
numeric booleans, counting
bag comprehensions
structurally free records & tagged unions

Implementation in Java (very nearly open source)
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Future Work

Grow the library
more pre-defined functions

User-definable subprograms
type signatures, determinism, . . .

Visualization of distributions
histograms, pie charts, . . .

Code generation
embed in other applications

Optimization
tune the runtime environment
deforestation of collections
stochastic independence vs. referential transparency
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Collaborations Welcome!

Curious to try ALEA in teaching?
Thinking of some interesting example application?
Suggestions for syntax, semantics or library?
Contribute a visualization, UI or tool connection?
. . .

http://bandm.eu/metatools/doc/usage/getit.html

BTW, ML ALEA IACTA EST 23 /23

http://bandm.eu/metatools/doc/usage/getit.html


AGENDA

Formal Stuff

BTW, ML ALEA IACTA EST 23 /23



Types

Type ∶∶= any ∣ none
∣ num(Num) ∣ coll(Shape,Mode,Type)
∣ prod(FieldId ↛ Type) ∣ sum(CaseId ↛ Type)

Num ∶∶= bool ∣ nat ∣ int ∣ rat
Shape ∶∶= list ∣ bag ∣ set
Mode ∶∶= pos ∣ opt
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Untyped Values

Val ∶∶= const(Q) ∣ NaN ∣ thelist(L(Val)) ∣ thebag(M(Val)) ∣ theset(P(Val))
∣ record(FieldId ↛ Val) ∣ tag(CaseId×Val)
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Extensions

[[none]]V = ∅ [[any]]V = Val

[[num(bool)]]V = const(B) [[num(nat)]]V = const(N) ∪ {NaN}
[[num(int)]]V = const(Z) ∪ {NaN} [[num(rat)]]V = const(Q) ∪ {NaN}

[[coll(list,opt, t)]]V = thelist(L([[t]]V)) [[coll(list,pos, t)]]V = thelist(L([[t]]V) \ {∅})
[[coll(bag,opt, t)]]V = thebag(M([[t]]V)) [[coll(bag,pos, t)]]V = thebag(M([[t]]V) \ {∅})
[[coll(set,opt, t)]]V = theset(P([[t]]V)) [[coll(set,pos, t)]]V = theset(P([[t]]V) \ {∅})

[[prod(T)]]V = record({f ∶ FieldId ↛ Val ∣ ∀i ∈ dom(T). f(i) ∈ [[T(i)]]V})
[[sum(T)]]V = ⋃

i∈dom(T)
tag({i} × [[T(i)]]V)
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Empty or Inhabited?

emptynone
∀i ∈ dom(T).emptyT(i)

empty sum(T)

empty t
emptycoll(s,pos, t)

∃i ∈ dom(T).emptyT(i)
emptyprod(T)
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Subtyping

none ⊑ t ⊑ any
n1 ⊑ n2

num(n1) ⊑ num(n2) bool ⊑ nat ⊑ int ⊑ rat

s1 ⊑ s2 m1 ⊑ m2 t1 ⊑ t2
coll(s1,m1, t1) ⊑ coll(s2,m2, t2) pos ⊑ opt

∀i ∈ dom(T2).T1(i) ⊑ T2(i)
prod(T1) ⊑ prod(T2)

∀i ∈ dom(T1).T1(i) ⊑ T2(i)
sum(T1) ⊑ sum(T2)
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Abstract Syntax

Expr ∶∶= var(VarId) ∣ const(Val×Type) ∣ app(FunId×Expr)
∣ choose(D(Expr)) ∣ exp(Expr) ∣ dist(DistId×Expr)
∣ let(Expr×VarId×Expr)
∣ nswitch(Expr×([[num(rat)]]V ⊎ {default} ↛ Expr))
∣ iter(Expr×VarId×Expr)
∣ tuple(FieldId ↛ Expr) ∣ select(Expr×FieldId)
∣ cons(CaseId×Expr) ∣ cswitch(Expr×(CaseId ↛ VarId×Expr))
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Type Assignment (1/2)

Γ(x) = t
Γ ⊢ var(x) ∶ t

v ∈ [[t]]V
Γ ⊢ const(v, t) ∶ t

Γ ⊢ e ∶ t ⊢ f ∶ t → u
Γ ⊢ app(f ,e) ∶ u

⋀n
k=1 Γ ⊢ ek ∶ tk

Γ ⊢ choose({e1 ↦ p1, . . . ,en ↦ pn}) ∶ ⨆n
k=1 tk

Γ ⊢ e ∶ t t ⊑ num(rat)
Γ ⊢ exp(e) ∶ num(rat)

Γ ⊢ e ∶ t ⊢ f ∶ t → u
Γ ⊢ dist(f ,e) ∶ u

Γ ⊢ e ∶ t Γ⊕ {x ↦ t} ⊢ e′ ∶ t′

Γ ⊢ let(e,x,e′) ∶ t′

Γ ⊢ e0 ∶ t t ⊑ num(rat) ⊢ t • C = {e1, . . . ,ek} ⋀n
k=1 Γ ⊢ ek ∶ uk

Γ ⊢ nswitch(e0,C) ∶ ⨆n
k=1 uk

Γ ⊢ e ∶ coll(s,m, t) s ⊑ s′ Γ⊕ {x ↦ t} ⊢ e′ ∶ coll(s′,m′
, t′)

Γ ⊢ iter(e,x,e′) ∶ coll(s′,m ⊔m′, t′)
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Type Assignment (2/2)

⋀n
k=1 Γ ⊢ ek ∶ tk

Γ ⊢ tuple({i1 ↦ e1, . . . , in ↦ en}) ∶ prod({i1 ↦ t1, . . . , in ↦ tn})

Γ ⊢ e ∶ prod(T) T(i) = t
Γ ⊢ select(e, i) ∶ t

Γ ⊢ e ∶ t
Γ ⊢ cons(i,e) ∶ sum({i ↦ t})

Γ ⊢ e0 ∶ sum({i1 ↦ t1, . . . , in ↦ tn}) ⋀n
k=1 Γ⊕ {xk ↦ tk} ⊢ ek ∶ uk

Γ ⊢ switch(e0,C⊕ {i1 ↦ (x1,e1), . . . , in ↦ (xn,en)}) ∶ ⨆n
k=1 uk

[[t]]V ⊆ dom(C)
⊢ t • C = C([[t]]V)

[[t]]V /⊆ dom(C) default ∈ dom(C)
⊢ t • C = C([[t]]V ∪ {default})
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Evaluation (Deterministic)

E(x) = v
E ⊢ var(x) ↝ v E ⊢ const(v, t) ↝ v

E ⊢ e ↝ v [[f]]F(v) = v′

E ⊢ app(f ,e) ↝ v′

E ⊢ e ↝ v E⊕ {x ↦ v} ⊢ e′
↝ v′

E ⊢ let(e,x,e′) ↝ v′

E ⊢ e0 ↝ v0 E ⊢ C′(v0) ↝ v
E ⊢ nswitch(e0,C) ↝ v where C′(v) = {C(v) if defined

C(default) otherwise

E ⊢ e ↝ theS(v1, . . . ,vn) ⋀n
k=1 E⊕ {x ↦ vk} ⊢ e′

↝ v′
k

E ⊢ iter(e,x,e′) ↝ v′
1 ⊕ ⋅ ⋅ ⋅ ⊕ v′

n

⋀n
k=1 E ⊢ ek ↝ vk

E ⊢ tuple({i1 ↦ e1, . . . , in ↦ en}) ↝ {i1 ↦ v1, . . . , in ↦ vn}

E ⊢ e ↝ record(V) V(i) = v
E ⊢ select(e, i) ↝ v

E ⊢ e ↝ v
E ⊢ cons(i,e) ↝ tag(i,v)

E ⊢ e0 ↝ (i,v0) C(i) = (x,e) E⊕ {x ↦ v0} ⊢ e ↝ v
E ⊢ cswitch(e0,C) ↝ v
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Evaluation (Stochastic)

E ⊢ const(v, t) ⇀ δ(v)

⋀n
k=1 E ⊢ ek ⇀ Qk

E ⊢ choose({e1 ↦ p1, . . . ,en ↦ pn}) ⇀ µ({Q1 ↦ p1, . . . ,Qn ↦ pn})

E ⊢ e ⇀ {const(x1) ↦ p1, . . . , const(xn) ↦ pn} m = ∑n
k=1 pn ⋅ xn

E ⊢ exp(e) ⇀ δ(const(m))

E ⊢ e ⇀ P = {v1 ↦ p1, . . . ,vn ↦ pn} ⋀n
k=1[[f]]F(vk) = Qk

E ⊢ dist(f ,e) ⇀ µ({Q1 ↦ p1, . . . ,Qn ↦ pn})

E ⊢ e ⇀ P = {v1 ↦ p1, . . . ,vn ↦ pn} ⋀n
k=1 E⊕ {x ↦ vk} ⊢ e′

⇀ Qk

E ⊢ let(e,x,e′) ⇀ µ({Q1 ↦ p1, . . . ,Qn ↦ pn})
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Evaluation (Pseudo-Random)

E ⊢ const(v, t) s�s
−−−→ v

⋀n
k=1 E ⊢ ek

sk−1�sk
−−−−−−→ vk

E ⊢ tuple({i1 ↦ e1, . . . , in ↦ en})
s0�sn
−−−−→ {i1 ↦ v1, . . . , in ↦ vn}

random(s;p1, . . . ,pn) = (s′,k) E ⊢ ek
s′�s′′
−−−−→ v

E ⊢ choose({e1 ↦ p1, . . . ,en ↦ pn})
s�s′′
−−−→ v
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