
Rewriting For Parametrization

Markus Lepper1 and Baltasar Trancón y Widemann2

1 <semantics/> GmbH, Berlin
post@markuslepper.eu

2 Ilmenau University of Technology, DE
Baltasar.Trancon@tu-ilmenau.de

Abstract. In most computer languages, parametrization of library mod-
ules is realized by pre-wired parameters, which must be instantiated to
some concrete value when importing. This approach is not optimal for
text structure definitions (aka ”document types”), used in document
processing. The situation is special since (a) all definitions contained are
totally visible to the user anyhow (”glass-box”), and (b) potentially every
reference can come into the need of being a parameter, when application
contexts evolve. Therefore a method of free rewriting seems more ade-
quate. This article presents the outlines of the module rewriting system
as implemented in the authors’ d2d language for notating XML encoded
documents. The theoretical and technical problems for pure algebraic
usage (here: control of a parsing process) are trivial, but not for reifying
and referring to the rewriting results in a sensible way, which is neces-
sary for generating diagnosis and user documentation. The article gives
an algorithm for both cases and discusses the transfer to other languages
with glass-box approach.

Keywords: Rewriting; Modularization; Text Processing; Document type

1 Introduction

The d2d project realizes a front-end for directly writing down XML-encoded doc-
uments, in the flow of creative authoring. The necessary text structure definition
is a collection of content definitions per each single element type, as usual. These
definitions are organized in modules, which are imported and parametrized as a
whole. In the last years very different applications of d2d evolved, from musicol-
ogy to book-keeping. Most of their text structure definitions rely on one general
purpose base architecture, called d2d gp. Its components and features resemble
the LATEX article style [4], with lists, tables, floats, tables of contents, footnotes,
abstracts, hyper-refs, citations, etc. and it as a whole, or parts of it, have been
imported, parametrized and adopted to serve those very different purposes.3

It turned out that this kind of reuse is hardly feasible with particular com-
ponents being pre-wired for parametrization, but that the need of modifying

3 See http://senzatempo.de/mahler/gmahler_sinf3_satz1.html and
http://bandm.eu/metatools/docs/usage for very different instantiations.

2 Markus Lepper and Baltasar Trancón y Widemann

or exchanging subdefinitions arises nearly everywhere in the structure. For this
very reason, among others, famous systems like TEX [3] and LATEX [4] employ dy-
namic binding, to achieve the necessary flexibility for reuse. But this mechanism
is neither explicit nor compositional; the intended interactions can neither be
checked automatically, nor easily understood or documented. So the d2d module
system is based on a third alternative, on explicit free rewriting : Every reference
appearing in an expression in any definition can be altered when importing and
instantiating the containing module. Astonishingly, this simple idea is novel in
this context.

Coupling rewrite rules with module imports allows to adopt a whole collection
of definitions in an atomic and consistent way. Basically, this mechanism is easy
to understand, straight-forward to implement and sufficiently expressive, as our
tool has proven in above-mentioned productive contexts.

The results of the rewriting are sentences in what is called underlying domain
language in the following. With these, two fundamentally different use cases
must be distinguished. In the first, called algebraic in the following, the results
of rewriting are used to control the execution of some evaluation process (in our
case, where the underlying domain language is a grammar description, this is a
parsing process). This case is easy to realize, as the discussion will show.

Severe problems arise in the second case, called reified in the following. Here
the results of rewriting shall be identified in a sensible way, to generate statistics,
user documentation, interactive error diagnosis, etc. All these are central issues in
projects which aim at domain experts not necessarily language experts. Here an
ergonomically sensible and computable notion of equivalence of the parametrized
element definitions is required.

The contributions of this article are practical in two concerns: First, we give
operational semantics for both cases, which are immediately executable and
designed for optimized performance. The first case is basically straight forward,
but there are some tricky details related to practical application. For the second
case is we establish a clean separation of a generic part and of the specifics of
the underlying domain language.

Second, many design decision have come from concrete needs in daily prac-
tice. These will be mentioned in the following, partly in footnotes.

Beyond the original context the results are applicable to other underlying
domain languages which follow a glass-box approach, i.e. the user who instantiates
a module sees the internal structure of the contained definitions. This is of course
the case with all kinds of document type definitions, but it applies also to other
realms like test data partitioning trees, libraries of grammar rules for natural
language processing, collections of algebraic/logic axioms for proof derivation,
openMath phrasebooks, text-based workflow languages, constraint pools for real-
world problem solving, models in description logics, etc. In all these contexts our
approach would be sensible.

Rewriting For Parametrization 3

2 The d2d Context

2.1 Principles of parsing

The d2d language is a front-end for creating complex documents, encoded as
XML objects. Intended for authoring and typing by domain experts, it tries not
to disturb the mental flow of writing, by minimalization of input noise. Therfore
it is equally well readable for humans, and suited for voice input. It combines
two layers of input: The top layer employs explicit tagging, the lower realizes
totally implicit tagging by character based parsers. On the tag level, most close
tags and some open tags are inferred and need not to be typed.

These are typical first lines of a d2d source text:

1#d2d 2.0 text using basic.deliverables : webpage
2#title Example of a Web Page
3#date 2012-12-28
4#authors #author Kraus, Karl #author Karl von Valentin
5#lang en+de

This input will be translated to . . .

1<webpage xmlns:a="http:bandm.eu/d2d_gp/basic/deliverables"
2 xmlns:b="http:bandm.eu/d2d_gp/basic/personalNames_de">
3 <a:title>Example of a Web Page</title>
4 <a:date><a:year>2012</a:year><a:month>12</a:month>
5<a:dayOfMonth>28</a:dayOfMonth></a:date>
6 <a:authors>
7 <a:author><b:name><b:given>Karl</b:given>
8 <b:family>Kraus</b:family></b:name></a:author>
9 <a:author><b:name><b:given>Karl</b:given><b:con>von</b:con>

10 <b:family>Valentin</b:family></b:name></a:author>
11 </a:authors>
12 <a:langs><a:lang>en</a:lang><a:lang>de</a:lang></a:langs>

The genuine XML syntax cannot be offered to authors who are used to the act
of writing as an immediate expressions of their personality, in the mental state of
creative flow. Also syntax controlled text editors, with all their blinking, popping-
up, interfering and colouring, are not an alternative for these truly creative.
Especially the character parsers, here for author, date, etc., disburden the
writer massively, nevertheless yielding well structured output in a standardized
format. This example is only meant to give a fundamental impression; exact
specifications can be found in [6] and [5].

2.2 Element Structure Definitions

A definition of the text structure is required for steering the parsing process.
The current implementation of d2d does understand W3C DTD [1], but our
own text structure libraries are written in d2d’s proprietary definition language,
heavily employing its two genuine features, the definition of character parsers
and module import with free rewritings.

4 Markus Lepper and Baltasar Trancón y Widemann

Every module maps identifiers to definitions. (See the data types Module
and Definition in Table 1; the mathematical notation applied is summarized
in Appendix A.) Each definition corresponds to an XML element type in the
generated output, where its identifier serves as its XML tag. A definition can
carry auxiliary XML specific parameters like “attribute” or “element” storage
type, tag override, namespace URL, trimming of whitespace, multi-lingual user
documentation, XSLT rules for the translation into various back-ends, etc.4

But mainly a definition contains a regular expression from T in Table 1 which
defines the possible contents of the element and governs its parsing process. Its
fundamental constructors, their meanings and constraints are very similar to
those in genuine XML DTD [1]5 and RelaxNG [2]. The constructors “,”, “|”,
“?”, “&”, etc. have their usual meanings.

The basic atoms of the expressions are references from R. These are either
simple identifiers from IT , and refer to the definitions contained in the same
module as the expression, or identifiers prefixed with one or more import keys
from II . Then they refer to a definition in an imported module.

2.3 Modules and Parametrization

Beside element definitions, every module can contain import clauses, modeled by
the data type Import in Table 1. For each of these (1) an import key is defined
(from II), to be used as a prefix for referring to the definitions in the imported
module; (2) its source text is identified by an absolute module address from IA.6;
and (3) three different kinds of rewrite rules may be applied to this source:

Global rewritings replace every occurrence of a particular reference every-
where in the imported module by the given replacement expression. This
applies to both kinds of expressions in the imported module, namely in ele-
ment contents definitions and in replacement expressions in import clauses.
The replacement expression will be evaluated in the context of the importing
module.

Local rewritings only affect one single element definition in the imported
module, as indicated by its identifier. In its expression, the given reference
is replaced by the replacement expression in the same way as with a global
rewriting. A local rewriting overrides the global rewriting for the same ref-
erence.

4 Most of these additional parameters need not to be known by those users who are
mere text authors. The glass-box is not totally transparent. Most important: the
XSLT rules which come with most elements for translation into different back-ends
are copied “under the hood” when importing modules.

5 Like DTD, d2d requires “1-unambiguity”.
6 In the concrete implementation, the address of a module IA is not a simple iden-
tifier but a dot-separated path, corresponding to static nesting of modules. This is
one of the details we do abstract from in this article. Similar with IT : Tags in the
input document may have local scope to the containing element. This corresponds
to definitions local to definitions, which are referred to also by dot-separated paths.

Rewriting For Parametrization 5

Import rewritings replace the whole import clause in the imported module
with the given import key by an import clause defined in the importing
module.

In the d2d format this looks like

1 module uses_other_modules
2 import M from module_to_import
3 ˆ((M.a, M.J.L.b, c)* / MODULE_PARAMETER)
4 ˆ(N / H)
5 import N from another_module
6 in a ˆ((N.a, N.a) / a)
7 in b ˆ(a / a)

This example module imports a first module and replaces in its source, ac-
cording to the rewrite rule in line 3, all references to “MODULE PARAMETER” by
the given expression. This in turn contains a reference “M:a” to the imported
and parametrized module itself. Please note that “MODULE PARAMETER” is syn-
tactically the same as a simple identifier “a”; its appearance has been chosen
only to indicate to the user that it is foreseen to be rewritten: Parametrization
in the narrow sense is subsumed as a special case of rewriting.7

The second import rewrites the regular expressions of the definitions “a”
and “b” in the imported module. In “a” it rewrites every reference to itself to
a sequence of two of these (line 6). In “b” it rewrites all references to “a” to
a definition named “a” in the importing module (line 7): In “a/a” the second
term is the reference to be replaced, as it stands unevaluated in the source rep-
resentation of the imported module; the first term is the replacement expression,
evaluated in the context of the importing module.

In most concrete fields of application, implicit re-exports turned out to be
indispensable: In line 3 above “M.J.L.b” does refer to a definition in an im-
ported module of an imported module of an imported module; another aspect
of the glass-box approach. 8

The third kind of rewriting is that of a whole import clause. It has been
introduced especially for multi-lingual support: All structure definitions e.g. for
calendric date and time, or for personal names, or postal addresses, are ex-
changed together, by one single rewrite rule, switching between whole modules.
Currently this feature is only defined between “direct aunt and nephew”: The

7 The implementation allows to declare a definition as “#GENERIC”, so that its refer-
ence must be rewritten in each import.

8 E.g. in the context of our LATEX-like d2d gp architecture, an instantiation of the
general purpose article for a particular technical documentation will distribute
the required additional in-line elements, like technical terms, abbreviations, symbols,
trade marks, formatting styles, not only to the flow text of paragraphs, but also into
the content models of captions of tables and figures, into titles, hypertext anchors,
footnotes, etc. Whenever further modification of the resulting top level format is nec-
essary, all these now correctly instantiated substructures shall also be immediately
addressable for reuse and rearrangement. This is achieved by implicit re-export.

6 Markus Lepper and Baltasar Trancón y Widemann

T ::= R | @T | T ˆ(T /R) | #empty | #none

| (T) | T ,T | T &T | T |T | T ? | T * | T +
| T ˜T | T ˜* | T ˜+ | [IT T] | (>T)
| ’ chars’ | " chars" | 0xhhhh
| T UT | T AT | T -T | T ..T

II // ids used as import key. Examples use “K”, “L”, etc.
IA // ids used as module source location. Examples use “my mod”, etc.
IT // names and tags of definitions. Examples use “a”, “b”, etc.
R = II⋆ × IT // references, relative to the containing module and its imports
Ξ // many additional attributes: representation, docu, XSLT, etc.

Module
∧
= [imps : II ↛ Import ; defs : IT ↛ Definition]

Import
∧
= [addr : IA ;

globalRews : R ↛ T ; localRews : IT ↛ R ↛ T ; impRews : II ↛ II]

Definition
∧
= [tag : IT ; regExp : T ; repr : Ξ]

// global constants, fixed per run:
module : IA ↛ Module top : IA × IT

import : II∗ ↛ Import
module′ : II⋆ ↛ Module

def : R ↛ Definition
base : I⋆ → I⋆

import(⟨⟩) = (top.1, {}, {}, {})
module′(i) = module(import(i).addr)

def(i, t) = module′(i).defs(t)
base(J ◀ j) = J

import(π ◀ p) = (a, , , i)

import(π ◀ p ◀ q) =

{
import(π ◀ q′) if(q 7→ q′) ∈ i

module(a).imps(q) otherwise

Table 1. Data types of the underlying domain language; global constants; auxiliary
navigation functions.

common ancestor imports two modules and replaces in the first one (in the ex-
ample “M”) one of its internal module imports (“H”) by its own second import
(“N”, see line 4).9

3 Algebraic Use of Rewriting Results

Table 1 shows in its top part the data types which represent the underlying
domain language and the module import statements. Its middle part shows the
two fundamental constant values: The function module maps source addresses
to unparameterized module sources. For each particular evaluation run, one def-
inition is fixed as the root element of the parsed text corpus, given by top as a

9 This could of course be easily extended to a free compositional device, which is
always desirable in the theoretical perspective, but does not seem to make much
sense in practice, – it soon gets too confusing.

Rewriting For Parametrization 7

// Stack of currently active local (=expression level) rewritings:
K1 = (R× T)⋆

// Stack of contexts of the insertion commands @ :
K2 = ((K1 × II⋆ × IT) ∪ {∇})⋆

visit[E] : K1 × II⋆ × IT ×K2 × T × E → (E ∪ {Error . . .})
action□[E] : II⋆ × IT → (E ∪ {Error . . .})

visit(k, J, d,m, r1 ˆ(r2/ j) , e) = visit(k ◀ (j 7→ r2), J, d,m, r1, e)
visit(k, J, d,m, @x, e) = visit(k, J, d, (m ◀ (k, J, d) ◀ ∇) , x, e)

visit(k ◀ ((i′, t′) 7→ x), J, d,m, (i, t) : R, e) =

{
visit(k, J, d,m, x, e) if(i, t) = (i′, t′)

visit(k, J, d,m, (i, t), e) otherwise

visit(⟨⟩, J, d,m, (i, t), e) = visit(⟨⟩, base(J),⊥,m, x, e)
if ((i, t) 7→ x) ∈ (import(J).globalRews ⊕ import(J).localRews(d))

otherwise :
visit(⟨⟩, J, ,m ◀ ∇, (i, t), e) = visit(⟨⟩, J ⌢ i, t,m, def(J ⌢ i, t).regExp, e)
visit(⟨⟩, J, ,m ◀ (k′, J ′, d′), (i, t), e) = visit(k′, J ′, d′,m, (i, t), e)
visit(⟨⟩, J, , ⟨⟩, (i, t), e) = action(J ⌢ i, t, e)

actionA(i, t, e) =

{
X if X = check(i, t) ̸= true

visit(⟨⟩, i, t, ⟨⟩, def(i, t).regExp, e) otherwise

check(i, t)

=

Error, no import key i if i ̸∈ dom import

Error, no module at a if a = import(i).addr ̸∈ dommodule

Error, no definition at (a, t) if t ̸∈ dom(module′(i).defs)

true otherwise

□ ∈ {, , | , & , ˜ , U , A , - , .. }
visit(k, J, d,m, r1, e) = e1

visit(k, J, d,m, r1 □ r2, e) = visit(k, J, d,m, r2, e1)

□ ∈ {* , + , ? , ˜* , ˜+ } t ∈ IT
visit(k, J, d,m, r □, e) = visit(k, J, d,m, [t r] , e)

= visit(k, J, d,m, > r, e) = visit(k, J, d,m, r, e)

γ ∈ {"α" , ’α’ , 0xhhhh,#empty,#none}
visit(k, J, d,m, γ, e) = e

Table 2. Rewriting of source definitions with mere algebraic semantics.

8 Markus Lepper and Baltasar Trancón y Widemann

static module’s source address plus an identifier of a definition therein. The indi-
cated module is instantiated “as is”, without outer rewritings, and the indicated
definition serves as the starting point for parsing and addressing.

Its lower part shows some auxiliary navigation functions: import translates
a sequence of import keys (like “K.L.M”) into an import statement (contained
in some particular module source); module′ into the source module mentioned
there; and def does the same for a definition.

In the expression language T from Table 1 only the first line is directly
related to rewriting and parametrization, the others serve for illustrating the
application context: The construct @x means the insertion or flattening of the
content models of all definitions referred to in x. This mechanism allows the
same definition to be used as XML element content model, or only as a constant
with a regular expressions as its value, or in both roles.

The construct eˆ(f / r) is an explicit rewriting on expression level, of all
identifiers r in the expression e by the replacement expression f . This is useful
especially in combination with the insertion operator, as in

(@a,@b) ˆ ((x,y*) / c)

or as a shorthand notation for repetition, as in

(x,x,x) ˆ ((a,(b|c)*,d) / x)

#empty is a constant which in the parsing process matches the empty in-
put, i.e. which always matches, but delivers no XML output, while #none never
matches. They are useful in replacement expressions to eliminate parts of se-
quences or alternatives.

Static we call all facts which follow from the source text of each module
alone, per se. Dynamic are those which arise after selecting top, by following
all imports and references from this starting point. An instantiated module is
indicated by its dynamic path, i.e. the sequence of import keys from II⋆ by which
it is reachable from top. An instantiated definition in this module is identified
by this dynamic path plus its identifier from IT .10

The expansion of definitions, i.e. the application of the rewriting rules is
implemented most naturally and in a compact way by the well-known visitor
pattern: By calling visit(⟨⟩, ⟨⟩,⊥, ⟨⟩, (⟨⟩, top.2),), all reachable definitions are ex-
panded for further processing by the function visit(k, J, d,m, x, e) from Table 2.
In this function signature, the sources of rewrite rules appear with decreasing
priority: k is a storage for local rewritings on expression level; J is the dynamic
path of the containing instantiated module; d is the identifier of the currently
visited definition, or ⊥ if x lives on module level (i.e. in a replacement expres-
sion of an import clause); x is the expression to expand and visit. The rule for
visit(. . . , x = (i, t) : R, . . .) processes relative, source text level references. The

10 The mere data type II⋆ × IT = R is also used for relative references on source
level. The transition between both data types is shown in the call to action□(J ⌢
i, . . .) in Table 2. The collection of dynamic paths is infinite when circular module
imports occur. This will not affect the termination of our algorithms, as discussed
in Section 4.3.

Rewriting For Parametrization 9

first three cases in its definition look for the first applicable rewriting in the
accumulated values k, J and m.

The argument e of the generic parameter type E is some additional accumu-
lator parameter fed through all visits, easily implemented as additional visitor
field variables. It is not needed here, in the pure algebraic use case, and simply
passed through, but will be employed in the context of the next section.

A tricky point is that all rewritings of identifiers shall be applied to insertions
twice, before and after expansion. This is again a mere pragmatic design decision:
Both modes of operation are needed. Assume a definition like “tags article
= ..., @ table, ...”, i.e. the definition of the contents of an element called
“article” which includes the spliced contents of the element “table”. Then
these two rewritings are both sensible:

– “use the content model of article, replacing (all references to and) all
insertions of table by those of mytable;”

– “use article, but in the inserted contents of table replace caption by
#empty.”

It seems that separate language elements for both modes either become very
complicated or must give up compositionality. Furthermore, we did not find a
use case which required to execute a replacement in one phase, and to suppress
it explicitly in the other. So we could unify both meanings and keep the language
front-end small. The command for splicing ∇ and the context for rewriting of
the spliced contents can be stored to the same stack m : K2.

For the placeholder action□() the intended functionality must be plugged in,
e.g. the function actionA() which performs just a context check. In the production
context of course different functions are plugged in which realize the intended
semantics.11 The last three rules in Table 2 simply descend into the expressions
of the underlying domain language, are thus specific and must of course also be
treated individually by any derived production visitor.

The collection of function definitions from Table 2 is complete, covers com-
mon static error cases as detected by check() and thus defines a precise oper-
ational semantics for the rewriting process. This is totally independent from
further properties of the underlying domain language, here: T .

Two problems do not arise: First, cycles and thus infinite structures are not
an issue, because the parsing process matches them against a finite input, or at
least against an always finite prefix of the input, which limits all access operations
in a natural way.

Second, duplications are not an issue: As usual in evaluation systems of this
kind, only the algebraic semantics are exploited. One and the same definition
may be unfolded and instantiated arbitrarily often, because the effect of all these
copies will implode again when the result, here: the parse tree, is finally delivered.

11 In our case, which is parsing, the current head of the input token stream is tested,
possibly consumed, a new XML result element is possibly opened or closed, etc.

10 Markus Lepper and Baltasar Trancón y Widemann

ER = R ↛ II⋆
cmpDef : II⋆ × II⋆ × IT × ER → (ER × boolean)
cmpExp : T × T × II⋆ × II⋆ × FR× ER → (ER × boolean)

refs : T → FR // delivers all references appearing in an expression.
sourceAddr : R ↛ (IA × IT)

sourceAddr(i, t) = (import(i).addr , t)

Q = sourceAddr−1(sourceAddr(i, t)) ◁ e

actionB((i, t), e) =

X if X = check(i, t) ̸= true

((j, t), e) if ((i, t) 7→ j) ∈ Q

ta(e, (i, t), ranQ) otherwise

ta(e, (i, t), {}) = actionA((i, t), e ∪ {(i, t) 7→ i})

ta(e, (i, t), {j} ∪ σ) =

{
((j, t), e′) if cmpDef(i, j, t, e) = (e′, true)

ta(e, (i, t), σ) otherwise

(prev)

V = refs(def(i, t).regExp)
Wζ = V ◁ (import(ζ).globalRews ⊕ import(ζ).localRews(t))

Vζ = (dom import(ζ).globalRews \ V) ∪
⋃

x ̸= t • dom import(ζ).localRews(x)
tb(e ∪ {(i, t) 7→ j}, i, j,Wi,Wj) = (e′, X ′)

cmpDef(i, j, t, e)

=

(e, false) if sourceAddr(i, t) ̸= sourceAddr(j, t)

(e, j
?
= x) elseif ((i, t) 7→ x) ∈ e

(e, false) elseif domWi ̸= domWj

(e, false) elseif X ′ = false

(e′, true) elseif Vi = Vj = {}
cmpExp(def(i, t).regExp, def(j, t).regExp, i, j, domWi, e

′) otherwise

(defs)

tb(e, i, j, {}, {}) = (e, true)
tb(e, i, j, {r 7→ s1} ∪ σ1, {r 7→ s2} ∪ σ2)

=

{
tb(e′, i, j, σ1, σ2) if cmpExp(s1, s2, i, j, {}, e) = (e′, true)

(e, false) otherwise

cmpExp(s1, s2, I, J,N, e) = (e′, true)

cmpExp(r1 ˆ(s1 / t1) , r2 ˆ(s2 / t2) , I, J,N, e)

=

{
(e, false) if t1 ̸= t2

cmpExp(r1, r2, I, J,N ∪ {t1}, e′) otherwise

(subst)

i = I ⌢ i′ j = J ⌢ j′

cmpExp((i′, t), (j′, u), I, J,N, e)

=

(e, false) if t ̸= u

(e, true) elseif (i′, t) ∈ N

(e, false) elseif sourceAddr(i, t) ̸= sourceAddr(j, t)

cmpExp((i′, t), (j′, t), I, J,N, e ∪ {(j, t) 7→ j})
elseif j ̸∈ dom e

(e, j
?
= x) elseif ((i, t) 7→ x) ∈ e

cmpDef(i, j, t, e ∪ {(i, t) 7→ j}) otherwise

(exp0)

Table 3. Reification I, testing for equivalence of rewriting results

Rewriting For Parametrization 11

`
∈ {* , + , ? , ˜* , ˜+ }

c ∈ {"α" , ’α’ , 0xhhhh,#empty,#none}
cmpExp(c1, c2, , , , e) = (e, c1

?
= c2)

cmpExp(r1
`

1, r2
`

2, I, J,N, e)

=

{
cmpExp(r1, r2, I, J,N, e) if

`
1 =

`
2

(e, false) otherwise

cmpExp(> r1, > r2, I, J,N, e)
= cmpExp(@ r1, @ r2, I, J,N, e) = cmpExp(r1, r2, I, J,N, e)
cmpExp([t1 r1] , [t2 r2] , I, J,N, e)

=

{
cmpExp(r1, r2, I, J,N, e) if t1 = t2

(e, false) otherwise

(exp1)

□ ∈ {, , | , & , ˜ , U , A , - , .. }
cmpExp(r1, r2, I, J,N, e) = (e′, X)

cmpExp(r1□s1, r2□s2, I, J,N, e)

=

(e, false) if □1 ̸= □2

(e, false) elseif X = false

cmpExp(s1, s2, I, J,N, e′) otherwise

(exp2)

actionC((i, t), e) = actionA((e(i, t), t), e)

Table 4. Reification II, comparison of expressions, specific for the underlying domain
language, and finally resulting visitor for both cases.

4 Reified Use of Rewriting Results

The situation changes fundamentally as soon as the expanded definitions shall
be “reified” and treated as identifiable objects, as it is frequently necessary in
practice for error diagnosis, user documentation, collection of statistic data, etc.

The current implementation of d2d administers polyglot documentation for
every XML element of a text structure in form of a hyper text, using d2d recur-
sively to document itself. These texts naturally are defined for the unexpanded
sources, and a computer scientist or language expert can possibly profit and
“link” them mentally. But the addressed domain experts are much more helped
with a documentation of the fully expanded structure definition, which tells them
directly where certain tags are allowed, required, forbidden, etc., and what their
role is in this particular context.

In all these cases, in contrast to the expansion process as described in the
preceding section, two severe issues arise: (A) the expansion is not limited by the
input data, therefore infinite structures must be eliminated explicitly, and (B)
multiple equivalent expansions of the same source definition should not occur, for
not confusing the user. Consequently, the properties of the underlying domain
language, here: T , can no longer be totally abstracted from, as it was possible in
the preceding section. The finiteness of the recursion depends on the definition

12 Markus Lepper and Baltasar Trancón y Widemann

of equality, and any notion of equivalence is related to the intended semantics
and to the pragmatic requirements from a user’s point of view.

Nevertheless, this influence is limited and can be isolated. For this purpose,
the following algorithm is given as a framework of two layers: The upper one steps
through definitions, using an optimized strategy, and is presented in Table 3. It
is independent of the properties of the underlying domain language. These come
into play on the lower level, which compares expressions, see Table 4.

4.1 Comparing Definitions

Problem (B) from the list above is easier to deal with, and a typical unification
problem. We search for the greatest fixpoint: All different instantiations of the
same source text definition for which no counterexample is found are put into
the same equivalence class. A counterexample is a sub-structure which shows a
difference. These equivalence classes are constructed by recursive descent, similar
to the visiting process above, enriched by very simple backtracking. In contrast to
the algebraic case, here two (2) definitions or expressions are visited in parallel.
During this descent, hypotheses of equivalence are collected.

This process is simplified significantly by two properties of the overall equa-
tion system: First, there is no negation, i.e. the addition of hypotheses is mono-
tone. Second, there are not many alternatives, i.e. whenever the hypothesis of
two instantiations being equivalent is added, there is only one single way to prove
it, namely to show the equivalence of their complete instantiated substructures
in a one-to-one fashion – there are no choice points with a finer granularity than
complete definition instantiations and their equivalence class, save those induced
by properties of the underlying domain language, see next section.

The definition re-uses the visitor code from the preceding section: action□ in
Table 2 is set to to actionB from Table 3, and then top is visited.12 The new code
makes now use of the accumulator parameter e to hold a map of type ER which
at the end of the process for each reference value reachable from top will give an
equivalence class, represented by one of its members. Only this representative
will appear in the generated documentation, statistics, etc.

When an absolute reference (i, t) is reached by the visitor code, i.e. when
actionB((i, t), e) is called, it is checked by the rule (prev) whether the same
source has been visited previously. If not, this instantiation starts its own equiv-
alence class. Else it is checked whether this instantiation has already been classi-
fied, or else, whether it is equivalent to one of the already established equivalence

12 In contrast to the parsing job as described above, in the practical use cases cov-
ered here it is often sensible to have more than one root symbol to start with.
E.g., in the context of d2d gp, the documentation for “deliverables:article”,
“deliverables:book” and ‘deliverables:webpage” should be generated and
presented to the user together, in one turn, because these share most of their sub-
structures. In our model this is achieved by visiting a synthetic definition of a cor-
responding disjunction. Furthermore, the expansion of the “@” operator as imple-
mented above is no longer required, but optional.

Rewriting For Parametrization 13

classes. These are stepped through by the auxiliary function ta(). For this pur-
pose we define:

– Two expressions are equivalent iff their structure is identical, and all refer-
ences go to instantiations of definitions which are again equivalent. This is
implemented by (subst) and (exp0) to (exp2).

– The equivalence of two definitions is tested by (defs) and implies

(a) they have the same original source, and
(b) the set of references affected by rewrite rules (domVi/j) is the same for

both, and
(c) the replacement expressions of these effective rewrite rules are equivalent,

which is tested by the function tb(), and finally
(d) the rewritten content models of both definitions are equivalent.

The function cmpDef(i, j, t, e) checks whether the definitions with the iden-
tifier t in the module instantiations reachable by the dynamic paths i and j can
be made equivalent under the hypotheses in e by adding additional hypotheses.

Please note that condition (b) implies that we do not look for definitions
which are “accidentally” identical, e.g. by rewriting a particular reference in
one definition to itself, while not touching it in the other, with the same result,
as in “(a,b)ˆa/a” vs. “(a,b)”. This strategy seems more adequate to the
ergonomic needs of the user: Different sources of parametrization are always
“on purpose”, related to some need for structuring, which shall be reflected in
documentation etc. anyhow.

W.r.t. execution complexity it holds that all expressions in (defs) except the
two which call tb() and cmpExp() have static values, or require only a simple
map look-up in e. Comparing the replacement expressions of the rewrite param-
eters is an optimization instead of comparing the two resulting rewritten content
models completely: Since the sources are identical, differences only come from
the replacements.

Nevertheless, checking of condition (d) may be necessary, additionally. This is
due to all rewrite rules which are not in Vi/j , which are not directly applied to the
currently visited definitions, but to other definitions in the containing modules.
The current definitions refer to these others in very different forms, directly, or
indirectly via further definitions, or even via replacement expressions in further
module imports. These effects may differ in both instantiations. The test of this
condition is expensive, therefore it is done at last. It requires the descent into
both content models, and recursively to all definitions referred therein, up to the
first counterexample found. Otherwise it will further develop the state of e. But
condition (d) is definitely true if both considered import clauses do not carry
more rewrite rules beyond Vi/j , the directly effective ones; this inference speeds

up the comparison substantially, see the test for Vi = Vj = {}.
When there is no instantiation to which the visited instantiation is equivalent,

then actionA must be called to descend into all reachable definitions, for their
classification. This is always the case when a particular definition source is visited
for the very first time.

14 Markus Lepper and Baltasar Trancón y Widemann

4.2 Comparing Expressions

The function cmpExp(r1, r2, I, J,N, e) checks whether the two expressions r1 and
r2, to be evaluated in the instantiated modules given by the dynamic paths I
and J respectively, are equivalent under the hypotheses in e. In case of success
additional hypotheses will possibly be added to e. The set N contains those
references which need not be checked: They are affected by rewrite rules and
their replacement expressions have already been compared successfully when
testing condition (c) from above. The function is applied for testing criterion (c)
or (d) from the list above; it is initially called from (defs), and then recursively.

If the constructors of both expressions differ, i.e. no rule in Table 4 matches,
the unification fails by an implicit default rule, which indicates a structural dif-
ference of constructor application. For most underlying domain languages this
fact and its effect are independent of any rewriting of references, only related to
the involved components of the source text, and thus can be cached in some ad-
ditional global monotone storage. But this is not necessarily the case. In case of a
language similar to d2d it may be more appropriate to treat structural differences
as context-sensitive and healable: in T the expressions “(a,b)ˆ(#empty/b)”
and “(a|b)ˆ(#none/b)” could be considered equivalent.

The parameters of the matching rules are not symmetrical: All references
occurring in r1 are already classified, those in r2 are possibly free for unification.
All resulting hypotheses are stored to e and checked for consistency; any conflict
will make the unification fail and the calling level will unwind the hypotheses
by recurring to some pre-state of e. This simple procedure is feasible because
there are no further choice points after the most recent hypothesis has been set
by (defs) for a definition instantiation.

But on the level of expression alternatives may arise for equivalences, when
the intended semantics of the underlying domain language are taken into ac-
count, e.g. coming from associative and commutative constructors. These must
be modeled as additional inference rules in Table 4 accordingly. The d2d imple-
mentation eliminates the need for these further choice points by transforming
expressions into a normal form, based on a complete order of constructors and
primitive scalars.

The version actionB cannot be used for the original, algebraic purpose any-
more, because it cuts all recursions on the object level by simply storing an
hypothesis into e. This is feasible because the mere recursion in the expression
values does not detect further dependencies from rewriting parameters, – these
are always found in the first unrolling.

But once the map e : ER has been constructed, the simple variant actionC is
plugged in the visitor of Table 2 and visit() may be called, parametrized accord-
ingly, including this e.13 The resulting visitor process combines with equal rights
algebraic use, here: control of a parsing process, and reified use, like statistics,
documentation or user help functions: Only one and the same representative per
equivalence group will always be visited.

13 Additionally, the call to check() may be skipped.

Rewriting For Parametrization 15

4.3 Termination

The above-mentioned question (A) of termination is much harder to deal with. It
is only related to cyclic imports of modules, since cyclic references in the expres-
sion language can be safely ignored, as described above. A sufficient condition
for termination is that every reference which appears directly or indirectly in
a replacement expression for itself, due to a circular import, does so without
any constructor application from T , i.e. is totally identical with this expression,
modulo all renamings occurring on the circle. This condition prevents the im-
port parameter from accumulating complexity with every turn of the unrolling
of the import cycle, i.e. growing beyond all limits. Then our algorithm obvi-
ously terminates: There are statically only finitely many rewritten parameters
and replacement expressions; all recursion goes through the functions ta() and
tb() and both are consumptive by always removing one element from some fi-
nite set valued parameter. Less restrictive conditions for termination must take
into account the expression structure of the underlying domain language and are
subject of future work.

5 Related Work

The problem of rewriting in general is an important discipline on its own, with
a wide range of theories, tools and applications. Nearly all of them differ from
our approach since they deal with automated transformations, or preservations
of properties, or semantical identity, etc. Contrarily, in our context rewriting is
a mere practical means to derive new structures which are intended not to be
equivalent.

There are only few cases when rewriting has been applied to grammars: Al-
ready in 2001 Lämmel described a collection of grammar transforming operators
and their properties [7]. The motivating context is, similar to ours, a practi-
cal one, namely to reconstruct the originally intended semantics of ill-formed
artefacts. Cyclic definitions and reification are not an issue. His operators and
combinators live one and two levels above our simple substitution, respectively,
and their influence on properties is exhaustively discussed. It seems promising
to integrate some of these results into our future work; same holds for the fun-
damental considerations in [8].

RelaxNG [2] has an module import mechanism based on a notion of “file”,
which is defined by URLs. Thus mechanism supports replacement of definitions.
The file contents is inserted on the front-end level, and the general incremental
definition operators can be applied, not regarding the provenience. Our approach
differs substantially: Since we support replacement of references, (1) the original
definitions stay accessible, and (2) the rewriting takes place for a whole group
of definitions in a consistent way.

The W3C XSD schema language has methods for type derivation. [9] Derived
types can be used to define “substitution groups” which allow to replace one
element class by another. But since type derivation can both extend and restrict
types, the construction of precise semantics seems infeasible.

16 Markus Lepper and Baltasar Trancón y Widemann

References

1. Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, Fran cois Yergeau, and
John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition). W3C,
http://www.w3.org/TR/2006/REC-xml11-20060816/, 2006.

2. Clark and Murata. Document Schema Definition Language (DSDL) –
Part 2: Regular-grammar-based validation – RELAX NG. ISO/IEC,
http://standards.iso.org/ittf/PubliclyAvailableStandards/
c052348_ISO_IEC_19757-2_2008(E).zip, 2008.

3. Donald E. Knuth. The TEXbook. Addison-Wesley, 1987.
4. Leslie Lamport. LaTeX User’s Guide and Document Reference Manual. Addison-

Wesley Publishing Company, Reading, Massachusetts, 1986.
5. Markus Lepper and Baltasar Trancón y Widemann. d2d — a robust front-end

for prototyping, authoring and maintaining XML encoded documents by domain
experts. In Joaquim Filipe and J.G.Dietz, editors, Proceedings of the International
Conference on Knowledge Engineering and Ontology Delelopgment, KEOD 2011,
pages 449–456, Lisboa, 2011. SciTePress. http://bandm.eu/d2d/d2d2011_4.
pdf.

6. Markus Lepper, Baltasar Trancón y Widemann, and Jacob Wieland. Minimze
mark-up ! – Natural writing should guide the design of textual modeling frontends.
In Conceptual Modeling — ER2001, volume 2224 of LNCS. Springer, November
2001.

7. Ralf Lämmel. Grammar adaptation. In PROC. FORMAL METHODS EUROPE
(FME) 2001, VOLUME 2021 OF LNCS, pages 550–570. Springer-Verlag, 2001.

8. Ralf Lämmel and Wolfgang Lohmann. Format evolution, 2001.
9. Schema Working Group. XML Schema. W3C Candidate Recommendation, http:

//www.w3.org/XML/Schema, 2004.
10. J.M. Spivey. The Z Notation: a reference manual. Prentice Hall, 1988.

Rewriting For Parametrization 17

A Mathematical Notation

The employed mathematical notation is fairly standard, inspired by the Z notation
[10]. But for leaner notation, we add some overloading. The following table lists some
details:

F A Finite power set, the type of all finite subsets of the set A.
A×B The product type of two sets A and B, i.e. all pairs

{c = (a, b)|a ∈ A ∧ b ∈ B}.
We write c.1 and c.2 for the components a and b.

A → B The type of the total functions from A to B.
A ↛ B The type of the partial functions from A to B.
A ↔ B The type of the relations between A and B.
dom a, ran a Domain and range of a function or relation.
r # s The composition of two relations: The smallest relation s.t.

a r b ∧ b s c ⇒ a (r # s) c
r ⊕ s Overriding of function or relation r by s.

Pairs from r are shadowed by pairs from s:
r ⊕ s =

(
r \ (dom s× ran r)

)
∪ s

r ⊕ (a 7→ b) Overriding of function or relation r by a single maplet.
S ◁ R = R ∩ (S × ranR), i.e. domain restriction of a relation.
r−1 The inverse of a relation
a ▶ β A sequence seen as a first element a and the rest sequence β.
α ⌢ β Concatenation of two lists.
α ◀ b A list(/stack) with element b preceded by a prefix α.

T
∧
= [a : A; b : B] Definition of a schema, i.e. a product type with named pro-

jections.
Equivalent to T = A×B, with π1 = .a and π2 = .b

a
?
= b Function delivering the Boolean value which reflects equality.

Functions are considered as special relations, i.e. sets of pairs, like in “f ∪ g”.

